期刊文献+

NOGEA: A Network-oriented Gene Entropy Approach for Dissecting Disease Comorbidity and Drug Repositioning

原文传递
导出
摘要 Rapid development of high-throughput technologies has permitted the identification of an increasing number of disease-associated genes(DAGs),which are important for understanding disease initiation and developing precision therapeutics.However,DAGs often contain large amounts of redundant or false positive information,leading to difficulties in quantifying and prioritizing potential relationships between these DAGs and human diseases.In this study,a networkoriented gene entropy approach(NOGEA)is proposed for accurately inferring master genes that contribute to specific diseases by quantitatively calculating their perturbation abilities on directed disease-specific gene networks.In addition,we confirmed that the master genes identified by NOGEA have a high reliability for predicting disease-specific initiation events and progression risk.Master genes may also be used to extract the underlying information of different diseases,thus revealing mechanisms of disease comorbidity.More importantly,approved therapeutic targets are topologically localized in a small neighborhood of master genes in the interactome network,which provides a new way for predicting drug-disease associations.Through this method,11 old drugs were newly identified and predicted to be effective for treating pancreatic cancer and then validated by in vitro experiments.Collectively,the NOGEA was useful for identifying master genes that control disease initiation and co-occurrence,thus providing a valuable strategy for drug efficacy screening and repositioning.NOGEA codes are publicly available at https://github.com/guozihuaa/NOGEA.
出处 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2021年第4期549-564,共16页 基因组蛋白质组与生物信息学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.U1603285 and 81803960) the National Science and Technology Major Project of China(Grant No.2019ZX09201004-001)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部