期刊文献+

基于法矢量雅可比的总广义变差图像修复模型 被引量:1

A Total Generalized Variation Model for Image Inpainting Using the Jacobian of Normal
下载PDF
导出
摘要 图像修复是图像处理领域的基础问题,变分方法是实现图像修复的主要方法之一。经典的一阶变分模型存在阶梯效应,不能有效修复大破损区域。二阶变分模型为克服上述问题做出了改进,但修复后的图像会出现破损区域对比度降低、边界模糊现象。以经典二阶总广义变差模型(Total Generalized Variation,TGV)为基础,提出了一种基于法矢量雅可比的总广义变差模型(Total Generalized Variation Model with Jacobian of Normal,TGVJN)以修复更多破损图像区域信息。该模型通过引入一系列辅助变量、拉格朗日乘子和惩罚参数设计相应的交替方向乘子算法。实验结果表明,本文模型在保持对比度和边缘方面有明显优势,同时能够有效修复大尺度破损图像,缩小边界模糊区域。 Image inpainting is a basic problem in the field of computer vision and image processing,which is to repair the lost or damaged areas with the existing information in the original image.The smoothing feature of the first-order variational model is remarkable,but the staircase effect occurs during the process of inpainting.Variational models with second-order regularizers make efforts on overcoming these problems,but the contrast of the damaged area is reduced and the boundary is fuzzy after inpainting.Based on the classical second-order Total Generalized Variation model,a Total Generalized Variation model using Jacobian of Normal(TGVJN)is proposed to restore more image information.The proposed model introduces Auxiliary variables,Lagrangian multipliers and penalty parameters to design the corresponding Alternating Direction Method of Multipliers(ADMM).Experiment results demonstrate that the proposed model has superior advantages in edge and contrast preserving,and repairs the large-scale damaged image effectively as well as reduces the fuzzy boundary region.
作者 翟艳 潘振宽 魏伟波 ZHAI Yan;PAN Zhen-kuan;WEI Wei-bo(College of Computer Science&Technology,Qingdao University Qingdao Shandong 266071,China)
出处 《计算机仿真》 北大核心 2022年第3期150-155,199,共7页 Computer Simulation
基金 国家自然科学基金项目(61772294)。
关键词 图像修复 总广义变差模型 雅可比 法矢量 黑森 交替方向乘子法 Image inpainting Total generalized Variation model Jacobian Normal Hessian Alternating direction multiplier method
  • 相关文献

参考文献2

二级参考文献2

共引文献4

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部