摘要
计算机化分类测验(Computerized Classification Testing,CCT)能够高效地对被试进行分类,已广泛应用于合格性测验及临床心理学中。作为CCT的重要组成部分,终止规则决定测验何时停止以及将被试最终划分到何种类别,因此直接影响测验效率及分类准确率。已有的三大类终止规则(似然比规则、贝叶斯决策理论规则及置信区间规则)的核心思想分别为构造假设检验、设计损失函数和比较置信区间相对位置。同时,在不同测验情境下,CCT的终止规则发展出不同的具体形式。未来研究可以继续开发贝叶斯规则、考虑多维多类别情境以及结合作答时间和机器学习算法。针对测验实际需求,三类终止规则在合格性测验上均有应用潜力,而临床问卷则倾向应用贝叶斯规则。
Computerized classification testing(CCT)has been widely used in eligibility testing and clinical psychology for its efficiency in classifying participants.As an essential part of CCT,the termination rule determines when the test is to be stopped and what category the participants are ultimately classified into,directly affecting the test efficiency and classification accuracy.According to the theoretical basis of the termination rules,existing rules can be roughly divided into the likelihood ratio,Bayesian decision theory,and confidence interval rules.And their core ideas are constructing hypothesis tests,designing loss functions,and comparing the relative positions of confidence intervals,respectively.Based on these ideas,in different test situations,CCT termination rules have various specific forms.Future research can further extend Bayesian rules,construct rules for multidimensional and multicategory CCT,integrate process data into termination rules,and build rules under the framework of machine learning.In addition,from the perspective of practical requirement,all three types of rules have the potential to be applied in eligibility tests,while the Bayesian rules are optimal to clinical questionnaires.
作者
任赫
黄颖诗
陈平
REN He;HUANG Yingshi;CHEN Ping(Collaborative Innovation Center of Assessment for Basic Education Quality,Beijing Normal University,Beijing 100875,China)
出处
《心理科学进展》
CSSCI
CSCD
北大核心
2022年第5期1168-1182,共15页
Advances in Psychological Science
基金
国家自然科学基金面上项目(32071092)
中国基础教育质量监测协同创新中心基础教育质量监测科研基金项目(2019-01-082-BZK01和2019-01-082-BZK02)资助。
关键词
计算机化分类测验
终止规则
似然比
随机缩减
贝叶斯决策理论
computerized classification testing
termination rule
likelihood radio
stochastic curtailment
Bayesian decision theory