摘要
权重因子是影响代价函数的关键,并对复合电源功率分配具有较大影响。为使控制策略更加适合道路坡度、车速的时变特性,提出了基于模糊权重的复合电源模型预测控制策略。在建立、验证电池二阶Thevenin模型和超级电容器RC模型的基础上,基于模型预测理论建立了考虑坡度信息的复合电源模型预测控制方法;基于模糊控制原理,搭建了以速度、坡度信息为输入的权重系数模糊调节器,实现了模型预测权重矩阵进行自适应调整。仿真结果表明:基于fuzzy-MPC下的超级电容器回收制动总能量提升了9.1%;同时在上坡过程中,电池SOC变化量减小了25%,电容SOC变化量提升了16.7%,在下坡过程中,电池SOC变化量减小了45%,电容SOC变化量提升了21.3%。研究成果为考虑路况信息的复合电源功率分配、自适应、模型预测控制方法提供理论依据。
The weight factor is the key factor affecting the cost function and has a great influence on the power distribution of composite power supply. In order to make the control strategy more suitable for the time-varying characteristics of road gradient and vehicle speed, a model predictive control strategy based on fuzzy weight of hybrid energy storage system is proposed. Based on the establishment and verification of the second-order Thevenin model of battery and RC model of supercapacitor, a model predictive control method of hybrid energy storage system considering slope information was established based on model prediction theory;Based on fuzzy control theory, a weight coefficient fuzzy regulator was established with speed and slope information as input, and the weight matrix of model prediction was adjusted adaptively. The simulation results show that based on fuzzy-MPC, the total braking energy of super capacitor is increased by 9. 1%;at the same time, during the uphill process, the battery SOC change is reduced by 25%, the capacitance SOC change is increased by 16. 7%;in the downhill process, the battery SOC change is reduced by 45%, and the capacitance SOC variation is increased by 21. 3%. The research results provide a theoretical basis for the power allocation, adaptive control and model predictive control of hybrid energy storage system supply considering road condition information.
作者
杨朝红
马彬
尹炳琪
陈勇
YANG Zhao-hong;MA Bin;YIN Bin-qi;CHEN Yong(Mechanical and Electrical Engineering School,Beijing Information Science and Technology University,Beijing 100192 China;Collaborative Innovation Center of Electric Vehicles in Beijing,Beijing 100192,China;Beijing Laboratory for New Energy Vehicle,Beijing 100192,China)
出处
《计算机仿真》
北大核心
2022年第4期103-109,共7页
Computer Simulation
基金
国家自然科学基金青年基金项目(51608040)
北京市自然科学基金青年项目(3174049)
北京信息科技大学科研水平提高重点培育项目(2020KYNH203)
北京信息科技大学“勤信人才”培育计划项目(QXTCPC201701)
科技创新服务能力建设-北京实验室建设-新能源汽车北京实验室(PXM2019_014224_000005)。
关键词
复合电源
模型预测控制
权重系数
模糊调节器
坡度信息
Hybrid energy storage system
Model predictive control
Weight coefficient
Fuzzy regulator
Slope information