期刊文献+

卷积神经网络中激活函数的性质分析与改进 被引量:11

Analysis and Improvement of Properties of Activation Functions in Convolutional Neural Networks
下载PDF
导出
摘要 为了提高卷积神经网络模型的效率,针对激活函数进行了研究。通过研究多种激活函数的发展进程,列举各类激活函数的性质,以及在分析模型前向传播和反向传播中激活函数所起到的作用的基础上,提出了改进的激活函数Re LU-Xe X,有效的缓解了梯度消失、“神经元坏死”等问题。在MNIST、CIFAR-10、CIFAR-100、MSTAR数据集上的试验结果表明,改进的激活函数Re LU-Xe X整体表现强于其它的一些激活函数,且在模型的收敛速度上有所提升。对激活函数的性质进行了较为深入的研究,将激活函数的理论和实际表现进行了对照,用算法仿真论证了改进的激活函数Re LU-Xe X在理论上存在的优势。 In order to improve the efficiency of the convolutional neural network model, this paper studied the activation function. By studying the development process of various activation functions, enumerating the properties of various activation functions and analyzing the role of activation functions in forward and back propagation of the model, an improved activation function Re LU-Xe X is proposed, which effectively alleviated the problems of gradient disappearance and " necrosis of neurons". The experimental results on the MNIST, CIFAR-10, CIFAR-100, and MSTAR datasets show that the improved activation function Re LU-Xe X overall performance is stronger than some other activation functions, and the convergence speed of the model has been improved. In this paper, a more indepth study of the nature of the activation function was carried out, the theoretical and actual performance of the activation function was compared, and the theoretical advantages of the improved activation function Re LU-Xe X were demonstrated by algorithm simulation experiments.
作者 张焕 张庆 于纪言 ZHANG Huan;ZHANG Qing;YU Jiyan(Key Laboratory of National Defense of Intelligent Ammunition Technology,School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)
出处 《计算机仿真》 北大核心 2022年第4期328-334,共7页 Computer Simulation
基金 国防科学技术预先研究基金项目(KO01071)。
关键词 图像识别 深度学习 卷积神经网络 激活函数 反向传播 Image recognition Deep learning Convolutional neural network Activation function Back propagation
  • 相关文献

参考文献10

二级参考文献90

  • 1王茜,董学仁,尉吉勇,马玉真.神经网络技术在智能传感器系统中的应用与发展[J].自动化仪表,2004,25(7):1-3. 被引量:2
  • 2李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,36(5):17-18. 被引量:18
  • 3Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 4LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 5Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 6Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 7Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 8Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 9Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 10Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.

共引文献840

同被引文献100

引证文献11

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部