期刊文献+

基于主成分分析的模糊频繁项集合挖掘方法 被引量:2

Mining method of fuzzy frequent item set based on principal component analysis
下载PDF
导出
摘要 传统模糊频繁项集合挖掘方法的挖掘范围较大,且无法预处理模糊频繁项集合,导致存在运行内存过大、应用有效性低的问题。因此提出新的间隔约束条件下的模糊频繁项集合挖掘方法。方法预处理模糊频繁项集合,修补缺损数据,并引入主成分分析法完成数据的降维,并为数据添加间隔约束条件,缩小挖掘范围。利用蚁群算法获取最优爬行路径,挖掘模糊频繁项集合。实验结果表明,与传统方法相比,所提方法运行内存小,挖掘有效性更理想。 The traditional mining methods of fuzzy frequent item-sets have many defects, such as wide mining range, lack of preprocessing process of fuzzy frequent item-sets, which lead to the problems of too large running memory and low application effectiveness. Based on this, a novel mining method of fuzzy frequent item-sets under interval constraints is reported. Firstly, the set of fuzzy frequent terms was preprocessed in order to repair the defective data. Secondly, principal component analysis was used to reduce dimension data. Next, interval constraints were added to the data to narrow the mining scope. Finally, an ant colony algorithm was introduced to obtain the optimal crawling path and mine the fuzzy frequent item set. The experimental results show that compared with the traditional methods, the running memory and mining effectiveness of this method are better than those of the traditional methods.
作者 耿立校 李恒昱 刘丽莎 GENG Li-xiao;LI Heng-yu;LIU Li-sha(Hebei University of Technology,Tianjin 300401,China)
机构地区 河北工业大学
出处 《计算机仿真》 北大核心 2022年第2期410-413,共4页 Computer Simulation
基金 工业和信息化部2019年工业互联网创新发展工程项目(TC19083W8)。
关键词 间隔约束 频繁项 预处理 数据挖掘 蚁群算法 主成分分析法 Interval constraints Frequent items Preprocessing Data mining Ant colony algorithm Principal component analysis
  • 相关文献

参考文献12

二级参考文献51

共引文献53

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部