期刊文献+

基于多模态深度学习的图像序列弱小目标识别 被引量:1

Image Sequence Weak and Small Target Recognition Based on Multi-Modal Deep Learning
下载PDF
导出
摘要 针对现有图像序列弱小目标识别存在图像特征学习不全面、训练样本较大,导致对相似物体识别率及准确率较低的问题,提出基于多模态深度学习的图像序列弱小目标识别。利用弱小目标与背景之间的相关性对单帧图像进行背景抑制,得到目标和高频噪声,对图像做目标分割处理,剔除高频噪声。在此基础上,使用加入稀疏性约束的自编码器不断调节其自身参数,压缩输入信息,提取有用的输入特征,训练出最佳唯一向量,使用优化的CNN深度学习模型完成弱小目标识别。实验结果表明,所提方法能够在不依赖大量识别训练的情况下,始终保持较高的识别率,最大识别率为99.21%,优于传统方法。 Traditional image sequence weak small target recognition has defects, such as incomplete image feature learning and large training samples, thus leading to the problem of low recognition rate and accuracy for similar objects. Therefore, an image sequence weak and small target recognition based on multi-modal deep learning was proposed in this work. The background of a single frame image was constrained by using the correlation between the weak and small target and the background. Then, the target and high-frequency noise were obtained, and the image was segmented to remove the high-frequency noise. Then, the self-encoder with sparsity constraint was used to adjust its parameters. The useful input features were extracted by compressing the input information. The useful input features were extracted to train the best unique vector, thus achieving the small target recognition. The results show that this method is superior to the traditional methods, and has a high recognition rate. The maximum recognition rate is up to 99.21%.
作者 纪冲 王琛 JI Chong;WANG Chen(Inner Mongolia Agricultural University College of Computer and Information,Inner Mongolia Hohhot 010018,China)
出处 《计算机仿真》 北大核心 2022年第2期414-418,共5页 Computer Simulation
基金 内蒙古自治区高等学校科学研究科研项目(NJZZ20039)。
关键词 弱小目标 单帧图像背景抑制 目标分割 稀疏自编码器 深度学习模型 Weak and small target Single frame image background inhibition Target segmentation Sparse self-encoder Deep learning model
  • 相关文献

参考文献12

二级参考文献94

共引文献82

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部