期刊文献+

基于语义分割的室外场景识别技术研究 被引量:3

Research on Outdoor Scene Recognition Technology Based on Semantic Segmentation
下载PDF
导出
摘要 针对于场景识别问题,提出一种基于开源的室外场景数据集以及自定义采集的数据集在deepLabV3+深度学习模型上进行实验,并运用一种改进的K-近邻算法对DeepLabV3+深度学习模型进行优化。与现有的测试数据集的方法不同,省去了对数据集进行标签的工作,减少了大量的前期准备工作,提高了模型的计算效率以及分类模型的准确率和召回率。结果表明,使用K-近邻算法改进后的Deeplabv3+模型识别精度达到相0.75,较于直接使用Deeplabv3+模型进行语义分割的准确率0.65提高了0.1,并且得到了效果明显,在一定程度上提升了实验效率以及算法的鲁棒性。 Aiming at the problem of scene recognition, an open-source outdoor scene data set and a custom-collected data set were proposed to experiment on the DeepLabV3+deep learning model, and an improved K-nearest neighbor algorithm was used to optimize the DeepLabV3+deep learning model. Different from the existing method of testing the data set, the work of labeling the data set was omitted, a lot of preliminary preparation work was reduced, and the calculation efficiency of the model and the accuracy and recall rate of the classification model were improved. The results show that the recognition accuracy of DeepLabV3+model improved by k-nearest neighbor algorithm reaches 0.75,which is 0.1 higher than that of 0.65 for semantic segmentation directly using DeepLabV3+model, and the effect is obvious, which improves the experimental efficiency and the robustness of the algorithm to a certain extent.
作者 张怡萌 陈宁 余顺年 ZHANG Yi-meng;CHEN Ning;YU Shun-nian(College of Mechanical and Energy Engineering,Jimei University,Xiamen Fujian 361021,China)
出处 《计算机仿真》 北大核心 2022年第2期476-481,486,共7页 Computer Simulation
基金 福建省自然科学基金资助项目(2016J01755)。
关键词 深度学习 语义分割 场景识别 Deep learning Semantic segmentation Scene recognition
  • 相关文献

参考文献2

二级参考文献26

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005.

共引文献159

同被引文献42

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部