摘要
以Web of Science合著论文数据为基础,参照以高端生产性服务业为对象的世界城市网络系列研究选取全球526个主要城市,借助空间分析和网络分析,分析全球城市知识合作网络演化的结构特征和驱动因素。结果显示:(1)空间结构方面,“头部”城市格局稳定,欧美城市垄断明显;城市在全球知识合作网络与全球高端生产性服务网络中的空间分布存在差异;全球城市知识合作网络在不同地理尺度上均呈现出非均衡特征,网络重心有显著的东移和南移趋势。(2)拓扑特征方面,全球城市知识合作网络的规模、密度和连通性不断增强;网络呈现出显著的“小世界性”和“无标度性”、“核心-边缘”结构和“社群”结构;不同城市在网络中发挥着不同的“全球功能”和“国家功能”。(3)驱动因素方面,全球城市知识合作网络的演化由内生和外生驱动因素共同作用。其中,内生驱动因素包括当代知识创新范式的转变、知识创新过程的非线性演进、知识组合的特定方式、合作对象择取的“偏好依附”以及维持合作关系的“社会纽带”;外生驱动因素包括地理邻近、国家边界、区域协定以及殖民历史。
Based on data drawn from the Web of Science and a selection of 526 major world cities in line with the world city network research related with advanced producer services,this paper performed multiple spatial and network analyses to examine the evolution of structural features and driving factors of the global interurban knowledge collaboration network.The results show that:(1) the spatial structure of the top cities of the network,which are mostly in Europe and US,has remained stable.The spatial configurations of the centers of global innovation and global production services are different.The connectivity of cities is unevenly distributed across different geographical scales,with a clear west-to-east and north-to-south shift.(2) In terms of topological structures,the scale,density,and connectedness of the network have increased over time.The network exhibits small-world and scale-free features,and presents significant “core-periphery” and “community” structures.Cities differ in their national and global functions.(3) The evolution of the global interurban knowledge collaboration network is influenced by both endogenous and exogenous driving factors.Endogenous driving factors include the shifting paradigm of contemporary knowledge innovation,the non-linear development paths of knowledge innovation,the unique modes of knowledge combination,the “preferential attachment”,and the social interdependence of maintaining knowledge collaboration.Exogenous driving mechanisms include geographical proximity,country borders,regional agreements,and colonial histories.
作者
曹湛
戴靓
吴康
彭震伟
CAO Zhan;DAI Liang;WU Kang;PENG Zhenwei(College of Architecture and Urban Planning,Tongji University,Shanghai 200092,China;School of Public Administration,Nanjing University of Finance and Economics,Nanjing 210023,China;School of Urban Economics and Public Affairs and Beijing Key Laboratory of Megaregions Sustainable Development Modeling,Capital University of Economics and Business,Beijing 100070,China)
出处
《地理研究》
CSSCI
CSCD
北大核心
2022年第4期1072-1091,共20页
Geographical Research
基金
国家自然科学基金项目(52008298、41901189、42171216)
中国博士后基金面上项目(2020M671229)
霍英东高等院校青年教师基金(171077)。
关键词
全球城市
知识合作网络
空间结构
拓扑结构
驱动因素
global cities
knowledge collaboration network
spatial structure
topological structure
driving factor