期刊文献+

水下拖曳系统临界运动特性快速确定方法 被引量:1

Rapid Determination Method of Critical Motion Conditions of Underwater Towing System
下载PDF
导出
摘要 在进行水文要素的剖面测量时,拖体需要做起伏运动,预设轨迹的周期和振幅决定了测量精度和范围。为了实现拖曳系统的自主化控制,确定预设轨迹的可行性条件十分重要。文中基于尾翼摆动角与拖体攻角的线性化假设,通过反演拖曳系统的预设运动轨迹,建立了尾翼摆动控制的动力学模型,推导出尾翼摆动角的解析表达式。经典型算例验证,结果与试验数据具有一致性。进一步,采用建立的模型快速确定水下拖曳系统的临界运动特性,以及母船前行速度与拖体起伏运动的协调关系,研究表明可将斯特努哈尔数作为预设轨迹能否实现的必要限制条件之一,该无量纲数与母船速度、预设轨迹的振幅和周期相关,反映了运动的非定常性。在斯特努哈尔数小于0.22范围内,可以通过控制尾翼摆动的方式,自主化实现设定运行轨迹。 The towing body is the main part of a towing profiler. It can realize waveform track movement and measure real-time multi-parameters of the ocean. Therefore, the period and amplitude of the preset trajectory determine measurement accuracy and range. To realize autonomous control of the towing profiler, it is important to determine the feasibility conditions of the preset trajectory. Based on the assumption of linearization of the tail swing angle and towing body attack angle, a dynamic model with tail swing control was established in this study by inverting the preset motion trajectory of the towing system and deriving the analytical expression of the tail swing angle. The theoretical results were in good agreement with the experimental data. Furthermore, the established model was used to determine the critical motion characteristics of the underwater towing system as well as the coordination relationship between the forward speed of the mother ship and the undulating motion of the towing body. The study verified that the Strouhal number can be considered as a condition for the realization of the preset trajectory, which is related to the speed of the mother ship as well as the amplitude and period of the preset trajectory and reflects the unsteady nature of motion. When the Strouhal number was less than 0.22, the trajectory could be reproduced autonomously by controlling the tail swing.
作者 张丹 梁建通 宋海升 李孝伟 谢少荣 ZHANG Dan;LIANG Jian-tong;SONG Hai-sheng;LI Xiao-wei;XIE Shao-rong(School of Mechanics and Engineering Science,Shanghai University,Shanghai 200444,China;School of Mecha-tronic Engineering and Automation,Shanghai University,Shanghai 200444,China)
出处 《水下无人系统学报》 2022年第2期165-169,共5页 Journal of Unmanned Undersea Systems
关键词 水下拖曳系统 尾翼摆动角 斯特努哈尔数 underwater towing system tail swing angle Strouhal number
  • 相关文献

参考文献3

二级参考文献77

  • 1廖世俊,顾云冠,朱继懋.6000m深海拖曳系统动力响应计算[J].海洋工程,1995,13(2):31-37. 被引量:9
  • 2楼连根,黄国梁,邬昌汉.水平面大振幅平面运动机构用于水下运载体水动力系数的研究[J].海洋工程,1993,11(2):8-14. 被引量:4
  • 3张潞怡,朱继懋.深海拖曳系统运动响应的理论研究[J].海洋学报,1997,19(2):99-106. 被引量:8
  • 4Cannon T C, Genin J. Dynamic behavior of a materially damped flexible towed cable[J]. Aeronautical Quarterly, 1972, 23: 109-120.
  • 5Irvine H M, Caughey T K. The linear theory of free vibrations of a suspended cable[A]. Proceedings of royal society of london, series A, 1974, 341: 299-315.
  • 6Leonard J W, Recher W W. Nonlinear dynamics of cables with low initial tension[J]. Journal of the Engineering Mechanics Division, ASCE. 1972, 98 (EM 2): 293-309.
  • 7Ma D, Leonard J. Slack-elasto-plastic dynamics of cable systems[J]. Journal of the Engineering Mechanics Division ASCE. 1979, 105 (EM2): 207-222.
  • 8Zhang L Y, Liang H, Zhou J M. A real time expert control system for 6000 m deep towing system[A]. Hydrodynamics-theory and applications (eds. Chwang. A T, Lee, J H W, and Leung, D Y C) A.A. Balkema, Rotterdom[M]. 1996, 1: 213-218.
  • 9Walton T S, Polachech H. Calculation of transient motion of submerged cables[J]. Mathematics of Computation, 1960, 14: 27-46.
  • 10Sanders J V. A three dimensional dynamic analysis of a towed system[J]. Ocean Engineering, 1982, 9(5): 483-499.

共引文献24

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部