期刊文献+

基于改进免疫遗传的配电网故障区段定位研究 被引量:5

Research on Fault Section Location of Distribution Network Based on Improved Immune Genetic Algorithm
下载PDF
导出
摘要 针对目前智能算法在配电网故障定位中存在收敛速度慢、易陷入局部最优的问题,提出将基于免疫遗传算法(ImmuneGeneticAlgorithm,IGA)应用于配电网故障定位中,同时引入精英保留思想对传统免疫遗传算法进行改进。改进后的算法拥有遗传算法搜索特性的同时保留了免疫算法多机制寻求多目标函数最优解的自适应特性,很大程度上避免了算法“早熟”,有效提高了算法的准确度和收敛速度。仿真结果表明,当配电网发生单重故障、多重故障或信号畸变时,改进免疫遗传算法都能够准确快速地进行区段定位,具有较好的有效性、容错性和快速性。 In consideration of the problems of slow convergence speed and easiness to fall into local optimum in the fault location of distribution network using traditional intelligent algorithm,the immune genetic algorithm(IGA)has been proposed to be used in fault location in distribution network,and the idea of elite reservation has been introduced to improve the immune genetic algorithm.The improved algorithm not only has the search characteristics of genetic algorithm,but also retains the adaptive characteristics of multi-mechanism immune algorithm to seek the optimal solution of multi-objective function,largely avoiding the"premature"phenomenon,and effectively improving the accuracy and convergence of fault location speed.The simulation results indicate that the improved immune genetic algorithm can accurately and quickly locate the fault section when single/multiple faults or signal distortion occurs in the distribution network,showing well effectiveness,fault tolerance and rapidness.
作者 徐海燕 李栋 吴浩 邓思敬 董星星 XU Haiyan;LI Dong;WU Hao;DENG Sijing;DONG Xingxing(School of Automation and Information Engineering,Sichuan University of Science&Engineering,Yibin 644000,China;Artificial Intelligence Key Laboratory of Sichuan Province,Yibin 644000,China)
出处 《四川轻化工大学学报(自然科学版)》 CAS 2022年第2期63-69,共7页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 国家自然科学基金项目(11705122) 四川省科技厅项目(2017RCL53) 人工智能四川省重点实验室项目(2015RYY01,2017RYY02)。
关键词 配电网 故障定位 免疫遗传算法 精英保留 distribution network fault location immune genetic algorithm elite retention
  • 相关文献

参考文献17

二级参考文献177

共引文献347

同被引文献38

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部