期刊文献+

Boosting the cell performance of the SiO_(x)@C anode material via rational design of a Si-valence gradient 被引量:5

下载PDF
导出
摘要 Relieving the stress or strain associated with volume change is highly desirable for high-performance SiOx anodes in terms of stable solid electrolyte interphase(SEI)-film growth.Herein,a Si-valence gradient is optimized in SiOx composites to circumvent the large volume strain accompanied by lithium insertion/extraction.SiO_(x)@C annealed at 850℃ has a gentle Si-valence gradient along the radial direction and excellent electrochemical performances,delivering a high capacity of 506.9 mAh g^(−1) at 1.0 A g^(−1) with a high Coulombic efficiency of~99.8%over 400 cycles.Combined with the theoretical prediction,the obtained results indicate that the gentle Si-valence gradient in SiO_(x)@C is useful for suppressing plastic deformation and maintaining the inner connection integrity within the SiO_(x)@C particle.Moreover,a gentle Si-valence gradient is expected to form a stress gradient and affect the distribution of dangling bonds,resulting in local stress relief during the lithiation/delithiation process and enhanced Li-ion kinetic diffusion.Furthermore,the lowest interfacial stress variation ensures a stable SEI film at the interface and consequently increases cycling stability.Therefore,rational design of a Si-valence gradient in SiOx can provide further insights into achieving high-performance SiOx anodes with large-scale production.
出处 《Carbon Energy》 SCIE CAS 2022年第2期129-141,共13页 碳能源(英文)
基金 This study was supported by a grant from the National Natural Science Foundation of China(No.61804030) the Solar Energy Conversion&Energy Storage Engineering Technology Innovation Platform(No.2018L3006) the Fujian Natural Science Foundation for Distinguished Young Scholars(Grant No.2020J06042).
  • 相关文献

参考文献7

二级参考文献45

  • 1Veen A van et al 1990 AIP Conf. Proc. 218 171
  • 2Matsumoto Y, Reyes M A and Escobosa A 2005 J. Appl. Phys. 98 014909
  • 3Qin G G et al 1996 Appl. Phys. Lett. 69 1689
  • 4Yu R S, Ito K, Hirata K, Zheng W and Kobayashi Y 2003 J. Appl. Phys. 93 3340
  • 5Valakh M Ya et al
  • 6Schultz P J and Lynn K G 1998 Rev. Mod. Phys. 60 701
  • 7Yu R S et al 2003 Chem. Phys. Lett. 379 359
  • 8Canham L T 1990 Appl. Phys. Left. 57 1046
  • 9Lopes J M J et al 2004 Nucl. Instrum. Methods Phys. Res. B 218 438
  • 10Song H Z et al 1998 Appl. Phys. Lett. 72 356

共引文献29

同被引文献18

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部