期刊文献+

基于纹理免疫的JPEG预压缩图像降尺度因子检测

Downscaling Factor Detection of Pre-JPEG Compressed Images Based on Texture-Immune
下载PDF
导出
摘要 图像编辑工具的普及导致JPEG图像越来越容易被篡改,其中重采样操作方法通过几何变换能够使伪造的图像更加逼真,因此对JPEG图像进行重采样检测至关重要。传统的光谱分析法依据差分图像相邻极值的间隔遵循几何分布,以及在直方图上的峰值呈现周期性,通过峰值分析对下采样因子进行估计,但由于图像纹理统计特征的周期性干扰了直方图的提取,导致检测准确性较低。提出一种用于JPEG预压缩图像降尺度因子检测的纹理免疫块效应分析算法,利用快速导向滤波对图像进行预处理,并去除图像的纹理和噪声。使用Canny算子对滤波后的图像进行边缘检测,以减轻周期性边缘的干扰,对图像进行交叉差分,从而凸显块效应,提高JPEG图像降尺度因子估计的准确性。在此基础上,结合极大似然估计和谱分析得出降尺度因子的估计值,减小估计误差。实验结果表明,该算法能有效削弱图像纹理对重采样估计的影响,具有较强的纹理免疫能力。 The popularity of image editing tools makes JPEG images increasingly vulnerable to tampering,and the resampling operation method makes forged images more realistic through geometric transformation.Resamplingof the detection of JPEG images is therefore crucial.The traditional spectral analysis method follows a geometric distribution according to the interval of adjacent extreme values of the difference image and presents periodic peaks on the histogram.Thedownsampling factor is estimated through peak analysis.The periodicity oftheimage texture statistical features interferes with the extraction of the histogram,resulting in low detection accuracy.A texture immune block effect analysis algorithm for the detection of the downscaling factor of the pre-JPEG compressed images is proposed.The image is pre-processed by fast-guided filtering,and the texture and image noise are removed.The Canny operator detects the edge of the filtered image to reduce the interference of periodic edges,and the cross difference highlights the block effect and improves the accuracy of the JPEG image downscaling factor estimation.On this basis,combined with maximum likelihood estimation and spectral analysis,the downscaling factor is estimated to reduce the estimation error.Experimental results show that the algorithm can effectively weaken the influence of image texture on resampling estimation and provide strong texture immunity.
作者 党良慧 张玉金 路东生 DANG Lianghui;ZHANG Yujin;LU Dongsheng(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第5期272-280,共9页 Computer Engineering
基金 上海市自然科学基金(17ZR1411900) 上海市科委重点项目(18511101600) 上海高校青年教师培养计划项目(ZZGCD 15090)。
关键词 纹理免疫 JPEG预压缩图像 快速导向滤波 降尺度因子估计 图像重采样检测 JPEG块效应 交叉差分 texture-immune pre-JPEG compressed image fast guide filtering downscaling factor estimation image resampling detection JPEG block artifacts cross-difference
  • 相关文献

参考文献4

二级参考文献54

  • 1张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 4王波,孙璐璐,孔祥维,尤新刚.图像伪造中模糊操作的异常色调率取证技术[J].电子学报,2006,34(B12):2451-2454. 被引量:39
  • 5Fridrich J, Soukal D, and Lukas J. Detection of copy-move forgery in digital images[C]. Digital Forensic Research Workshop Proceedings, Cleveland, OH, USA, Aug. 6-8, 2003: 1-10.
  • 6Popescu A C and Farid H. Statistical tools for digital forensics[C]. 6th International Workshop on Information Hiding Proceedings, Toronto, Canada, May, 2004: 128-147.
  • 7Mahdian B and Saic S. Blind authentication using periodic properties of interpolation[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(3): 529-538.
  • 8Lukas J, Fridrich J, and Goljan M. Detecting digital image forgeries using sensor pattern noise[C]. SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII Proceedings, San Jose, California, USA, 2006, 6072: 362-272.
  • 9Shi Y Q, Chen C, and Chen W. A natural image model approach to splicing detection[C]. ACM 9th Workshop on Multimedia and Security Proceedings, Dallas, Texas, USA, September, 2007: 51-62.
  • 10Lukas J and Fridrich J. Estimation of primary quantization matrix in double compressed JPEG images[C]. Digital Forensic Research Workshop Proceedings, Cleveland, OH, USA, Aug. 6-8, 2003: 67-84.

共引文献453

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部