期刊文献+

基于EEMD和卷积神经网络的高压断路器故障诊断 被引量:17

Research on Circuit Breaker Fault Diagnosis Based on EEMD and Convolutional Neural Network
下载PDF
导出
摘要 高压断路器分合闸线圈的电流信号蕴含着丰富的断路器操动机构状态信息,对操动机构故障诊断具有重大意义。首先,文中通过集合经验模态分解(ensemble empirical mode decomposition,EEMD)具备的检测突变点性能确定有效分合闸线圈电流信号段,并对其进行EEMD自适应降噪处理。其次,运用时域求极值法对有效信号段进行信号处理,提取电流、时间复合特征量。最后,通过对复合特征量数据进行Kronecker张量积预处理,以便输入到卷积神经网络(convolutional neural network,CNN)中进行有监督地故障状态的辨识诊断。实验结果表明,文中所提分合闸线圈电流信号的电流、时间复合特征量提取方法有效、CNN卷积神经网络算法相比GA-BP和支持向量机(support vector machine,SVM)算法诊断精度更高,具有较高的实际应用价值。 The current signal of the opening and closing coil of the high-voltage circuit breaker contains a wealth of state information of the operating mechanism of the circuit breaker,which is of great significance for the fault diagnosis of the operating mechanism.Firstly,this paper determines the effective current signal segment by the detection of the breakpoint performance of EEMD,and performs EEMD adaptive noise reduction processing on it.Secondly,the time domain optimization method is used to process the effective signal segment,and the current and time composite feature quantities are extracted.Finally,the Kronecker tensor product preprocessing is performed on the composite feature quantity data to input into the CNN for the identification diagnosis of the supervised fault state.The experimental results show that the current and time composite feature extraction method of the closing coil current signal is effective,and the CNN convolutional neural network algorithm has higher diagnostic accuracy than GA-BP and SVM algorithms,and has higher practical application value.
作者 鄢仁武 林穿 宋微浪 高硕勋 钟伦贵 张文凤 YAN Renwu;LIN Chuan;SONG Weilang;GAO Shuoxun;ZHONG Lungui;ZHANG Wenfeng(Fujian Colleges and Universities Engineering Research Center of Smart Grid Simulation&Analysis and Integrated Control,Fujian University of Technology,Fuzhou 350118,China;Maintenance Branch Company of Fujian Electric Power Co.,Ltd.,Fuzhou 350013,China)
出处 《高压电器》 CAS CSCD 北大核心 2022年第4期213-220,共8页 High Voltage Apparatus
基金 福建省自然科学基金项目(2018H0003,2017J01731) 福州科技局项目(2020-GX-24) 福建省高校工程研究中心开放基金(KF-X19016、KF-D21009)。
关键词 操动机构 线圈电流 KRONECKER EEMD CNN operating mechanism coil current Kronecker ensemble empirical mode decomposition(EEMD) convolutional neural network(CNN)
  • 相关文献

参考文献14

二级参考文献109

共引文献1959

同被引文献268

引证文献17

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部