期刊文献+

一种基于轻量级深度网络的无参考光学遥感图像增强算法 被引量:3

A Non-reference Optical Remote Sensing Image Enhancement Algorithm Based on Lightweight Deep Network
下载PDF
导出
摘要 光学遥感图像由于传感器性能下降,恶劣天气等因素的影响,导致图像品质变差。表现为图像对比度不高、细节不清晰、颜色失真、噪声大等问题。文章提出一种无参考光学遥感图像增强算法,旨在训练一个轻量级的深度网络,以估计像素和高阶曲线的动态范围调整给定的图像。在网络训练过程中不需要任何成对或不成对的数据,而是通过一组无参考损失函数隐含地测量了图像增强品质并驱动了网络的学习。实验结果表明,文章算法的性能在多种指标上和视觉上均取得优异效果,能够适应更多的光照条件。 Optical remote sensing images are affected by factors such as sensor performance degradation and bad weather,resulting in poor image quality.It is manifested as problems such as low image contrast,unclear details,color distortion,and large noise.This paper proposes a non-reference optical remote sensing image enhancement algorithm that aims to train a lightweight deep network to estimate the dynamic range of pixels and higher-order curves to adjust a given image.No paired or unpaired data is required during network training,instead the enhancement quality is implicitly measured and drives the learning of the network through a set of no-reference loss functions.The experimental results show that the performance of the proposed algorithm has achieved excellent results in various indicators and visuals,and can adapt to more lighting conditions.
作者 庞英娜 马烽基 PANG Yingna;MA Fengji(China Academy of Space Technology,Beijing 100094,China;School of Electronic and Information Engineering,Beihang University,Beijing 100191,China)
出处 《航天返回与遥感》 CSCD 北大核心 2022年第2期74-81,共8页 Spacecraft Recovery & Remote Sensing
关键词 图像增强 深度网络 无参考损失函数 遥感图像 image enhancement deep network non reference loss function remote sensing image
  • 相关文献

参考文献2

二级参考文献15

  • 1王超,叶中付.基于变分的图像增强算法和伪彩色映射[J].数据采集与处理,2005,20(1):18-22. 被引量:8
  • 2谢美华,王正明.基于正则化变分模型的SAR图像增强方法[J].红外与毫米波学报,2005,24(6):467-471. 被引量:12
  • 3Silverman J. Signal processing algorithms for display and enhancement of IR images [ J]. Proc. SPIE Int. Soc. Opt. Eng, 1993,2020:440-450.
  • 4Viekers V E. Plateau equalization algorithm for real-time dispaly of high-quality infrared imagery [ J ]. Optical Engineering, 1996,35 ( 7 ) : 1921-1926.
  • 5Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 1997,43( 1 ) : 1-8.
  • 6Highnam R, Brady M. Model-based image enhancement of far infrared images [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(4) :410-415.
  • 7Tang M, Ma S D, Xiao J. Model-based adaptive enhancement of far infrared image sequences [ J ]. Pattern Recognition Letters , 2000,21:827-835.
  • 8Rudin L, Osher S, Fatemi E. Nonlinear total variation hased noise removal algorithms [J]. Physica D, 1992,60: 259-268.
  • 9Chan T F, Esedoglu S, Park F E. A fourth order dual method for staircase reduction in texture extraction and image restoration problems [ R ]. Technical Report, UCLA, 2005, cam05-28.
  • 10葛微,李桂菊,程宇奇,薛陈,朱明.利用改进的Retinex进行人脸图像光照处理[J].光学精密工程,2010,18(4):1011-1020. 被引量:46

共引文献49

同被引文献39

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部