期刊文献+

多目标优化视角下在线学习群体形成方法 被引量:2

Online Learning Group Formation Method From the Perspective of Multi-objective Optimization
下载PDF
导出
摘要 形成既能满足教师教学实施需求,又能得到学习者认可的在线学习群体是影响在线协作学习效率的重要因素.多目标粒子群算法和遗传算法应用于在线学习群体形成领域是目前的研究热点.然而,利用多目标粒子群算法解决在线学习群体形成问题时存在多样性差,容易陷入局部最优等问题;运用遗传算法解决在线学习群体形成问题时,则需要以耗费大量时间为代价.针对以上问题,提出了多目标优化视角下在线学习群体形成方法:首先根据学习者的多维个性特征建立在线学习群体形成MOLGFM模型(Multi-objective Online Learning Group Formation Model),其次针对形成模型的多目标优化特征,将多目标粒子群算法和遗传算法相结合提出了GAMOPSO(Genetic Multi-objective Particle Swarm Optimization)算法,最后采用GAMOPSO算法求解MOLGFM模型,提出多目标优化视角下的在线学习群体形成方法GAMOPSO-FA(Genetic Multi-objective Particle Swarm Optimization-Formation Approach).实验表明,相比采用经典算法的在线学习群体形成方法,所提GAMOPSO-FA方法形成的在线学习群体符合度更高,形成速度更快. The formation of an online learning group that can not only meet the teaching implementation needs of teachers,but also be recognized by learners is an important factor affecting the efficiency of online collaborative learning.The application of multi-objective particle swarm algorithm and genetic algorithm to the field of online learning group formation is the current research hotspot.However,when using the multi-objective particle swarm algorithm to solve the problem of online learning group formation,there are problems such as poor diversity and easy to fall into local optimization;when using genetic algorithm to solve the problem of online learning group formation,it needs to spend a lot of time at the cost.In response to the above problems,an online learning group formation method from the perspective of multi-objective optimization is proposed:First,establish a MOLGFM(Multi-objective Online Learning Group Formation Model)model based on the multi-dimensional personality characteristics of learners,and secondly aim at the multi-objective formation model.To optimize the characteristics,the GAMOPSO(Genetic Multi-objective Particle Swarm Optimization)algorithm is proposed by combining the multi-objective particle swarm algorithm and genetic algorithm.Finally,the GAMOPSO algorithm is used to solve the MOLGFM model,and the online learning group formation method GAMOPSO-from the perspective of multi-objective optimization is proposed.FA(Genetic Multi-objective Particle Swarm Optimization-Formation Approach).Experiments show that compared with the online learning group formation method using classic algorithms,the online learning group formed by the proposed GAMOPSO-FA method has a higher degree of conformity and a faster formation speed.
作者 李浩君 岳磊 张鹏威 杨琳 LI Hao-jun;YUE Lei;ZHANG Peng-wei;YANG Lin(College of Education Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;Hangzhou Vocational School of Electronical Information,Hangzhou 310021,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2022年第4期712-722,共11页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(62077043)资助。
关键词 多目标优化 在线学习 学习群体形成 遗传算法 多目标粒子群算法 multi-objective optimization online learning learning group formation genetic algorithm multi-objective particle swarm optimization
  • 相关文献

参考文献6

二级参考文献43

  • 1叶秀山.说不尽的康德哲学[J].哲学研究,1995(9):49-56. 被引量:13
  • 2Renninger. K. A. Hidi. S.& Krapp. A. The role of interest in learning and development. Hillsdale, NJ.. Erlbaum. 1992.
  • 3[德]赫尔巴特.教育学讲授纲要[M].李其龙译.参见赵荣昌,张济正主编的《外国教育论著选》,南京:江苏教育出版社,1990:222.
  • 4Dewey. J. Interest and effort in education. Boston: Riverside Press. 1913.
  • 5[美]杜威.学校与社会·明日之学校[M].赵祥麟,任钟印,等译.北京:人民教育出版社,2004.
  • 6Hidi. S. Interest and its contribution as a mental resource for learning. Review of Educational Research. 1990(60) : 549-571.
  • 7Krapp, A.. Interest, motivation and learning: An educational --psychological perspective. European Journal of Psychology of Education, 1999(14): 23-40.
  • 8Renninger. K. Children's play interest, representation, and activity. In R. Fivush & J. Hudson(Eds. ). Knowing and remembering in young children. Cambridge, MA: Cambridge University Press. 1990: 127--165.
  • 9Murphy, P. K. , & Alexander, P.. A motivated exploration of motivation terminology. Contemporary Educational Psychology. 2000.
  • 10Bergin, D. A.. Influences on classroom interest. Educational Psychologist, 1999(34):87-98.

共引文献58

同被引文献24

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部