期刊文献+

多粒度融合嵌入的中文实体识别模型 被引量:6

Chinese Entity Recognition Model of Multi-granularity Fusion Embedded
下载PDF
导出
摘要 中文由于词边界模糊,字符信息获取不足等问题,使得中文实体识别较为困难.论文针对汉字的象形文字特点,提出一种结合字形特征的增强字符信息算法,该算法利用卷积神经网络和BERT模型得到增强字符向量;同时提出多粒度融合嵌入算法,利用注意力机制将增强字符向量与词向量融合,最终构建出多粒度融合嵌入的中文实体识别模型.实验表明,该模型在中文实体识别中优于其它常用模型. Chinese entity recognition is difficult due to fuzzy word boundary and insufficient character information acquisition.In view of the hieroglyphic character characteristics of Chinese characters,paper proposes an enhanced character information algorithm combined with glyph characteristics.This algorithm uses convolutional neural network and BERT model to obtain the enhanced character vector.At the same time,a multi-granularity fusion embedding algorithm is proposed,which uses the attention mechanism to fuse the enhanced character vector and word vector,and finally constructs the multi-granularity fusion embedding Chinese entity recognition model.Experiments show that this model is superior to other common models in Chinese entity recognition.
作者 袁健 章海波 YUAN Jian;ZHANG Hai-bo(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2022年第4期741-746,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61775139)资助。
关键词 卷积神经网络 BERT 注意力机制 命名实体识别 convolutional neural networks BERT attention name entity recognition
  • 相关文献

参考文献3

二级参考文献29

  • 1俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157
  • 2Tjong K,Sang E F,De Meulder F.Introduction to the CoNLL-2003 shared task:Language-independent named entity recognition[C]∥Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4.Association for Computational Linguistics,2003:142-147.
  • 3McCallum A,Li W.Early results for named entity recognitionwith conditional random fields,feature induction and web-enhanced lexicons[C]∥Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4.Association for Computational Linguistics,2003:188-191.
  • 4Wang Zhi-qiang.Research on Chinese named entity recognition based on conditional random fields[D].Nanjing:Nanjing University of Science and Technology,2006(in Chinese).
  • 5Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 6Hinton G,Osindero S,Teh Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
  • 7Nadeau D,Sekine S.A survey of named entity recognition and classification[J].Lingvisticae Investigationes,2007,30(1):3-26.
  • 8Hinton G E.Learning distributed representations of concepts[C]∥Proceedings of the Eighth Annual Conference of the Cognitive Science Cociety.1986,1:12.
  • 9Wang M,Manning C D.Effect of non-linear deep architecture in sequence labeling[C]∥Proceedings of the 6th International Joint Conference on Natural Language Processing (IJCNLP).2013.
  • 10Mansur M,Pei W,Chang B.Feature-based Neural LanguageModel and Chinese Word Segmentation[C]∥ International Joint Conference on Natural Language Processing.2013:1271-1277.

共引文献100

同被引文献42

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部