摘要
车辆再识别(Re-identification)是计算机视觉领域的研究热点之一,其关键在于车辆辨别性特征的提取.为了更好地提取此类特征,本文提出了一种基于全尺度和注意力融合学习的特征提取方法,该方法通过多个感受野获取不同尺度的特征,并将提取到的不同尺度特征融合;同时为了在特征提取过程中重点关注辨别性特征,特引入注意力机制,增强特征的表达能力.经实验证明,该方法在VeRi-776主流数据集上的Rank-1和mAP均优于其他主流方法.
Re-identification of vehicles is one of the research hotspots in the field of computer vision,The key of Re-identification is the extraction of vehicle discriminative features.In order to better extract such features,this paper proposes a feature extraction method based on full-scale and attention fusion learning.This method acquires features of different scales through multiple receptive fields,and merges the extracted features of different scales.In order to focus on discriminative features in the feature extraction process,we introduce attention mechanism to enhance the expressive ability of features.Experiments have proved that this method is superior to other mainstream methods in both Rank-1 and mAP on the VeRi-776 mainstream dataset.
作者
王志愿
雒江涛
李伟生
徐正
文韬
许国良
WANG Zhi-yuan;LUO Jiang-tao;LI Wei-sheng;XU Zheng;WEN Tao;XU Guo-liang(School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Institute of Electronic Information and Network Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2022年第4期847-851,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(62003067)资助。
关键词
车辆再识别
全尺度
注意力
融合
vehicle re-identification
omni-scale
attention
fusion