期刊文献+

标签局部结构保持的离散哈希方法 被引量:1

Discrete Hashing Based on Label Local Structure Preserving
下载PDF
导出
摘要 跨模态哈希检索以其存储消耗低、检索效率高引起广泛关注.现有研究仍存在如何保持标签语义和语义信息损失问题.为此,本文提出了一种新颖的标签结构保持离散哈希方法LSPDH(Label Structure Preserving Discrete Hashing),该方法将哈希学习分为哈希码学习和哈希函数学习两步.哈希码学习中,不同于其他使用流形学习提取多模态数据特征的方法,本文方法则运用流形学习提取标签信息的局部结构并在汉明空间中保持,同时将标签信息映射到哈希码矩阵,融入哈希码学习过程,来降低构建流形相似度矩阵所造成的语义信息损失;哈希函数学习中使用了核函数来获取数据间的非线性关系.最后,通过三个基准数据集上与近期跨模态哈希方法对比实验,验证了提出方法的有效性. Cross-modal hashing attracted many people′s attention in cross-modal retrieval due to its characteristics of low storage consumption and high retrieval efficiency.However,many existing methods still have problems of how to preserve label semantic and reduce semantic information loss.To address these issues,a novel method LSPDH(Label Structure Preserving Discrete Hashing)is proposed in this paper,LSPDH is divided into two steps:hash codes learning and hash functions learning.In hash codes learning,different from other methods that use manifold learning to extract multimodal data features,LSPDH leverages the manifold learning to preserve the local structure of label information into the Hamming space,meanwhile the label information is mapped to the hash codes and integrated into the hash codes learning process to reduce the semantic information loss caused by the construction of the manifold similarity matrix.In hash function learning,kernel function is used to catch the nonlinear relationship between data.The experimental results on LSPDH and several state-of-the-art cross-modal hashing methods on three benchmark datasets demonstrate the effectiveness of LSPDH.
作者 敖宇翔 滕少华 张巍 滕璐瑶 AO Yu-xiang;TENG Shao-hua;ZHANG Wei;TENG Lu-yao(School of Computer,Guangdong University of Technology,Guangzhou 510006,China;Monash University,Melbourne 3800,Australia)
出处 《小型微型计算机系统》 CSCD 北大核心 2022年第5期998-1005,共8页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61972102)资助 广东省重点领域研发计划项目(2020B010166006)资助 广东省教育厅项目(粤教高函[2018]179号,粤教高函[2018]1号)资助 广州市科技计划项目(201903010107,201802030011,201802010026,201802010042,201604046017)资助。
关键词 哈希方法 两步哈希 流形学习 跨模态检索 Hash two-step Hash manifold learning cross-modal retrieval
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部