期刊文献+

基于高德导航数据与FOA-GRNN模型的驾驶倾向性辨识方法 被引量:3

A Method for Identifying Temperament Propensity of Drivers Based on AutoNavi Navigation Data and a FOA-GRNN Model
下载PDF
导出
摘要 为提升汽车主动安全功能,研究了1种基于高德导航数据的低成本、高精度驾驶倾向性辨识方法。基于高德软件开发工具构建动态驾驶数据采集应用程序,并融入个人智能终端以实现对行车数据的实时采集、处理与网络化存储。通过驾驶员生理、心理测试和实车实验获取不同驾驶倾向性驾驶员在导航行驶过程中由时间、速度和加速度推演的驾驶行为信息,采用主成分分析法(PCA)提取驾驶倾向性主要因子,并将驾驶倾向分为激进型、普通型和保守型这3类。构建基于果蝇优化算法(FOA)和广义回归神经网络(GRNN)的高精度驾驶倾向性辨识模型,利用特征变量集对模型进行训练和验证。验证结果表明:该模型总体准确率可达94.17%,对激进型、普通型和保守型的驾驶倾向性的辨识精确度分别为95.06%,92.5%,94.93%;进一步对比发现,该模型比单一的GRNN模型总体准确率提高5%~10%,与现有基于惯性传感器数据和离散小波变换结合自适应神经模糊推理系统的方法相比,该方法更具实用性且模型总体辨识准确率提升了2.17%。 In order to improve the capacity of automobiles in active safety,a method for identifying driving propensity with a low-cost and high accuracy based on AutoNavi navigation data is proposed. An application to collect driving data is developed based on Amap software development tool,which is further integrated into an intelligent terminal for data collection,procession,and storage in real time. Driver behavior data inferred from the time,speed,and acceleration of vehicles controlled by drivers with different temperament propensity are obtained through physiological,psychological and driving experiments. The principal component analysis(PCA)technique is used to extract the important factors for studying the temperament propensity of drivers,and the drivers are grouped into three driving propensities: radical,common and the conservative. A Fruit-fly optimization algorithm(FOA)and a generalized regression neural network(GRNN)are integrated to establish a high-precision model for driving propensity identification,which is further trained and verified using collected data. The verification results show that: the overall accuracy of the identification model is 94.17%,and the identification precision of the radical,common and the conservative types are 95.06%,92.5% and 94.93%,respectively;compared to the simple GRNN model,the overall precision of the proposed model is improved by 5%~10%;and compared to the previous method based on inertial sensor data and the integrated method of discrete wavelet transformation and adaptive neuro fuzzy inference system,the FOA-GRNN model is more practical,and its overall precision is improved by 2.17%.
作者 李浩 王晓原 韩俊彦 刘士杰 陈龙飞 史慧丽 LI Hao;WANG Xiaoyuan;HAN Junyan;LIU Shijie;CHEN Longfei;SHI Huili(College of Electromechanical Engineering,Qingdao University of Science and Technology,Qingdao 266000,Shandong,China;Collaborative Innovation Center for Intelligent Green Manufacturing Technology and Equipment of Shandong Province,Qingdao University of Science and Technology,Qingdao 266000,Shandong,China)
出处 《交通信息与安全》 CSCD 北大核心 2022年第2期63-72,共10页 Journal of Transport Information and Safety
基金 国家重点研发计划项目(2018YFB1601500) 山东省自然科学基金项目(ZR2020MF082)资助。
关键词 智能交通 高德导航数据 驾驶倾向性 主成分分析 FOA-GRNN intelligent transportation AutoNavi navigation data driving propensity principal component analysis FOA-GRNN
  • 相关文献

参考文献4

二级参考文献24

  • 1金立生,Bartvan Arem,杨双宾,Mascha van der Voort,Martijn Tideman.高速公路汽车辅助驾驶安全换道模型[J].吉林大学学报(工学版),2009,39(3):582-586. 被引量:28
  • 2王荣本,游峰,崔高健,余天宏.车辆安全换道分析[J].吉林大学学报(工学版),2005,35(2):179-182. 被引量:40
  • 3樊建聪,张问银,梁永全.基于贝叶斯方法的决策树分类算法[J].计算机应用,2005,25(12):2882-2884. 被引量:20
  • 4Geiser G, Nirschl G. Towards a system architecture of driver's warning assistant[R]//Parkes A M & Franzen S. (Eds.) Driving future vehicles, London: Taylor & Fran- cis. European Union PROMETHEUS program, 1993: 251-263.
  • 5Goldman R, Miller C, Harp S, et al. Idea project final re- port[R]. Contract ITS-7, Transportation Research Board, National Research Council, Washington, DC, 1995.
  • 6Seongkwan Mark Lee.Development of a three dimension- al lane change model [D]. University of Illinois at Urha- na-Champaign, 2008.
  • 7Markus Weinberger, Hermann Winner, Heiner Bubb.Adaptive cruise control field operational test--the learn- ing phase [J]. JSAE Review, 2001,22(4):487- 494.
  • 8Toshiya Hirose, Yasuhei Oguchi, Toichi Sawada, Frame- work of tailormade driving support systems and neural network driver model [J]. IATSS Research. 2004, 28(1): 108-114.
  • 9Meng X N, Lee K K, Xu Y S. Human driving behavior recognition based on hidden markov models[C]// IEEE International Conference on Robotics and Biomimetics, 2006:274 -279.
  • 10张磊.基于驾驶人风格自学习方法的车辆纵向驾驶预警系统[D].北京:清华大学,2009.

共引文献32

同被引文献51

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部