期刊文献+

一种新的基于聚类的试探性SMOTE算法 被引量:2

New tentative SMOTE algorithm based on clustering
下载PDF
导出
摘要 针对传统过采样算法中常常出现的生成噪声点、数据分布边缘化、未增强足够特征的问题,提出了一种新算法:试探性少数类过采样技术(tentative synthetic minority over-sampling technique,TSMOTE)。该算法先将少数类样本进行K-means聚类,然后创建正类安全水平等指标,运用试探性的思想,放出试探点求出每个少数类样本对应的警戒点,获取最适合新样本生成的空间区域,最后在簇心和警戒点之间进行合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE),确保新样本的生成质量。在12个公开数据集上的大量实验表明:TSMOTE算法可以有效提高分类器对少数类样本和整体数据集的分类性能。 Aiming at the phenomenon of generating noise points,marginal data distribution,and missing minority features that often occur in traditional oversampling algorithms,a new algorithm named by the Tentative Synthetic Minority Over-sampling Technique(TSMOTE)is proposed.The algorithm first performs K-means clustering of minority samples,and then introduces indicators such as positive safe level.Relying on tentative ideas,it releases tentative points to find the warning line corresponding to each minority sample,and obtains the most suitable new sample generation,Synthetic Minority Over-sampling Technique(SMOTE)is performed between the cluster center and the warning line to ensure the generation quality of new samples.A large number of experiments on 12 public data sets show that the TSMOTE algorithm can effectively improve the classification performance of the classifier on minority samples and overall data sets.
作者 王曜 郑列 WANG Yao;ZHENG Lie(School of Science, Hubei University of Technology, Wuhan 430068, China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第4期187-195,共9页 Journal of Chongqing University of Technology:Natural Science
基金 教育部人文社会科学研究规划基金项目(17YJA790098)。
关键词 不平衡数据 试探性 K-MEANS SMOTE 安全水平 unbalanced data tentative K-means SMOTE safe level
  • 相关文献

参考文献4

二级参考文献31

  • 1HanJiawei,KamberM,PeiJian.数据挖掘概念与技术[M].第3版.北京:机械工业出版社,2012.
  • 2Breiman L. Random forests [ J ]. Machine Learning, 2001,45 ( 1 ) :5-32.
  • 3Ishwaran H,Kogalur U B,Blackstone E H,et al. Random sur- vival forests [ J ]. The Annals of Applied Statistics, 2008,2 (3) :841-860.
  • 4Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:synthetic minority over-sampling technique [ J]. Journal of Artificial In- telligence Research ,2002,16:321-357.
  • 5Han Hui, Wang Wenyuan, Mao Binghuan. Borderline-SMO- TE:a new over- sampling method in imbalanced data sets learning[ J ]. Advances in Intelligent Computing, 2005,3644 : 878-887.
  • 6Vefikas A, Gelzinis A, Bacauskiene M. Mining data with ran- dom forests:a survey and results of new tests [ J ]. Pattern Rec- ognition, 2011,44 ( 2 ) :330-349.
  • 7Wu G, Chang E. Class-boundary alignment for imbalanced da- ta set learning[ C]//Proc of workshop on learning from imbal- anced data sets II. Washington DC : [ s. n. ] ,2003:49-56.
  • 8曾志强,吴群,廖备水,高济.一种基于核SMOTE的非平衡数据集分类方法[J].电子学报,2009,37(11):2489-2495. 被引量:49
  • 9吴克寿,曾志强.非平衡数据集分类研究[J].计算机技术与发展,2011,21(9):39-42. 被引量:5
  • 10陈铁明,马继霞,Samuel H.Huang,蔡家楣.一种新的快速特征选择和数据分类方法[J].计算机研究与发展,2012,49(4):735-745. 被引量:20

共引文献84

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部