期刊文献+

R^(n)中的广义逆Bonnesen型不等式 被引量:1

The General Inverse Bonnesen-Style Inequalities in R^(n)
下载PDF
导出
摘要 等周问题在积分几何中具有举足轻重的地位.该文主要研究R^(n)中等周不等式的逆形式,即广义逆Bonnesen型不等式.该文获得了R^(n)中几个新广义等周亏格上界的结果,作为推论,得到了更一般的平面上的逆Bonnesen型不等式;最后给出其中三个上界结果之间的最佳估计. The isoperimetric problem plays an important role in integral geometry.In this paper we mainly investigate the inverse form of the isoperimetric inequality,i.e.the general inverse Bonnesen-type inequalities.The upper bounds of several new general isoperimetric genus are obtained.Futhermore,as corollaries,we get a series of classical inverse Bonnesentype inequalities in the plane.Finally,the best estimate between the results of three upper bounds is given.
作者 董旭 张燕 曾春娜 王星星 Dong Xu;Zhang Yan;Zeng Chunna;Wang Xingxing(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331;School of Mathematics and Statistics,Shanghai Lixin University of Accounting and Finance,Shanghai 201620)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2022年第3期641-650,共10页 Acta Mathematica Scientia
基金 国家自然科学基金(11801048) 重庆英才青年拔尖计划(CQYC2021059145) 重庆市自然科学基金(cstc2020jcyj-msxmX0609) 重庆市留学人员创新创业支持计划(cx2018034,cx2019155) 重庆市教育委员会科学技术研究项目(KJQN201900530)~~。
关键词 Aleksandrov-Fenchel不等式 相对均质积分 逆Bonnesen型不等式 Aleksandrov-fenchel inequalities Inverse Bonnesen type inequality Quermassintegrals
  • 相关文献

参考文献5

二级参考文献24

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86: 1-29.
  • 3Ren D., Topics in integral geometry, Sigapore: World Scientific, 1994.
  • 4Santalo L. A., Integral geometry and geometric probability, Reading, Mass, Addison-Wesley, 1976.
  • 5Zhou J., On the Willmore deficit of convex surfaces, Lectures in Applied Mathematics of Amer. Math. Soc., 1994, 30: 279-287.
  • 6Hsiang W. Y., An elementary proof of the isoperimetric problem, Ann. of Math., 2002, 23A(1): 7-12.
  • 7Zhang G., A sufficient condition for one convex body containing another, Chin. Ann. of Math., 1988, 4: 447-451.
  • 8Zhang G., Zhou J., Containment measures in integral geometry, Integral geometry and Convexity, Singapore: World Scientific, 2006, 153-168.
  • 9Zhou J., A kinematic formula and analogous of Hadwiger's theorem in space, Contemporary Mathematics, 1992, 140: 159-167.
  • 10Zhou J., The sufficient condition for a convex domain to contain another in R^4, Proc. Amer. Math. Soc., 1994, 212: 907-913.

共引文献63

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部