期刊文献+

基于Matlab的6种上肢动作肌电信号识别 被引量:1

Recognition of Six Hand Gesture sEMG Signals Based on Matlab
下载PDF
导出
摘要 表面肌电(surface electromyogram,s EMG)信号的去噪处理和特征提取的效果好坏直接关系到识别的准确率。以获得较高的识别准确率为目标,对肌电信号的去噪处理和特征提取展开研究。先对表面肌电信号进行小波阈值去噪;再分别运用时域、频域和时频分析对去噪后的信号进行特征提取;最后利用BP神经网络对肌电信号进行分类。实验结果较好地实现了对肌电信号的分类,分类识别率为97%±2%。 The effect of denoising and feature extraction of sEMG is directly realated to the accuracy of recognition. To achieve a higher accuracy of recognition, the research on the optimization of denoising and feature extraction is needed.Firstly, the surface EMG signal is denoised by wavelet threshold. Then the time domain, frequency domain and time-frequency analysis are used to extract the features of the denoised signal;Finally, BP neural network is used to classify sEMG signals. The experimental results show that the classification of EMG signals is well realized, and the recognition rate is 97%±2%.
作者 顾兴龙 宋天赐 陈文涛 毛嘉元 GU Xinglong;SONG Tianci;CHEN Wentao;MAO Jiayuan(Engineering Technology Training Center,Civil Aviation Flight University of China,Guanghan 618307,China;College of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《机械工程师》 2022年第5期17-19,共3页 Mechanical Engineer
基金 中国民用航空飞行学院研究生教学建设项目(XKJ2019-3) 中国民用航空飞行学院青年基金(Q2018-34)。
关键词 表面肌电信号 特征提取 小波包变换 神经网络 surface electromyogram signal(sEMG) feature extraction wavelet packet transform neural network
  • 相关文献

参考文献4

二级参考文献17

  • 1罗志增,王人成.仿生电动假手的研究[J].仪器仪表学报,2005,26(7):674-677. 被引量:7
  • 2Clancy E A, Hogan N. Theoretic and Experimental Comparison of Root-Mean-Square and Mean-Absolute-Value Electromyogram Amplitude Detectors// Proc of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology. Chicago, USA, 1997, Ⅲ:1267-1270.
  • 3Chu J U, Moon I, Lee Y J, et al. A Supervised Feature-Projection- Based Real-Time EMG Pattern Recognition for Muhifunction Myoelectric Hand Control. IEEE/ASME Trans on Mechatronics, 2007, 12(3) : 282 -290.
  • 4Bo Ruifeng. Application of Learning Vector Quantization (LVQ) in Selecting Mechanism Type in Mechanical Design// Proc of the 7th International Symposium on Test and Measurement. Beijing, China, 2007 : 2692 - 2695.
  • 5Xue Jianzhong, Zhang Hui, Zheng Chongxun, et al. Wavelet Packet Transform for Feature Extraction of EEG during Mental Tasks// Prec of the 2nd International Conference on Machine Learning and Cybernetics. Xi'an, China, 2003, I: 360 -363.
  • 6Ekici S, Yildirim S, Poyraz M. Energy and Entropy-Based Feature Extraction for Locating Fault on Transmission Lines by Using Neural Network and Wavelet Packet Decomposition. Experts System with Applications: An International Journal, 2008, 34 (4): 2937- 2944.
  • 7Pham D T, Otri S, Ghanbarzdeh A, et al. Application of the Bees Algorithm to the Training of Learning Vector Quanlization Networks for Control Chart Pattern Recognition//Prec of the 2rid International Conference on Information and Communication Technologies: From Theory to Application. Damascus, Syria, 2006, I: 1624 - 1629.
  • 8崔建国,李一波,李忠海,王旭,张春霞.基于Bayes决策理论的表面肌电信号模式分类的研究[J].计量学报,2007,28(1):89-92. 被引量:3
  • 9王丽军,王景川,陈卫东.动态环境下智能轮椅的路径规划与导航[J].上海交通大学学报,2010,44(11):1524-1528. 被引量:15
  • 10张毅,张姣,罗元.基于手势跟踪的智能轮椅控制系统[J].重庆邮电大学学报(自然科学版),2011,23(6):741-745. 被引量:8

共引文献150

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部