期刊文献+

基于多尺度空洞卷积神经网络算法的航空业用电情况分析与预测 被引量:1

Analysis and Forecast of Aviation Power Consumption Based on MSCNN
下载PDF
导出
摘要 当前国家将数据纳入第七大生产要素,供电企业如何充分挖掘电力数据资产潜力,对数据要素进行高效配置,成为推动企业数字化发展的关键一环。国网沈阳供电公司依托电力大数据资源优势,基于多尺度空洞卷积神经网络算法,选取沈阳地区航空行业为样本开展用电量分析预测,分析该行业受到外部环境影响程度,从而判断对供电企业的影响,实现对社会经济的“电力数据孪生”。 At present,the state has brought data into the seventh production factor.How to fully tap the potential of power data assets and to allocate data elements efficiently have become a key link in promoting the digital development of enterprises.Relying on the advantages of power big data resources and based on MSCNN(multi-scale hollow convolution neural network)algorithm,State Grid Shenyang Power Supply Company selects the aviation industry in Shenyang as the sample to carry out power consumption analysis and prediction.It analyzes the impact of the industry on the external environment,so as to judge the impact on the power supply enterprises and to realize the“power data twin”of social economy.
作者 赵昊东 陈晓光 李佳伦 吴世龙 ZHAO Haodong;CHEN Xiaoguang;LI Jialun;WU Shilong(State Grid Shenyang Power Supply Company,Shenyang,Liaoning 110003,China)
出处 《东北电力技术》 2022年第4期15-17,21,共4页 Northeast Electric Power Technology
关键词 电力大数据 预测分析 数据挖掘 power big data forecast analysis data mining
  • 相关文献

参考文献5

二级参考文献25

共引文献1813

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部