期刊文献+

基于10keV X射线的总剂量效应实验技术实现与应用 被引量:1

Implementation and Application of Total Dose Effect Experimental Platform Based on 10keV X-Ray
下载PDF
导出
摘要 采用X射线作为辐射源开展总剂效应实验是一种可行有效的总剂量效应研究手段。本文首先简要介绍项目组搭建的一台基于10 keV X射线的总剂量效应实验平台的基本组成和各模块功能,并给出了10 keV X射线源辐射场的各项指标测量结果,包括剂量率、能谱特性和辐射场面积等信息。在此基础上,给出了该平台在晶圆级电参数测量时的性能指标,平台提供的探卡测试解决方案,可实现48通道的并行辐照加偏和效应测试,小电压测量时漏电流小于10 pA。最后,利用该平台对40 nm工艺MOSFET开展了总剂量效应研究,获得了该器件的效应规律和损伤机制。结果表明:搭建的10 keV X射线的总剂量效应实验平台对国产电子器件抗辐射加固技术研究具有重要意义。 This paper briefly introduces the basic composition and module functions of a total dose effect experimental platform based on 10 keV X-ray,and gives the measurement results of the radiation field of 10 keV X-ray,including dose rate,energy spectrum,and radiation field area.In addition,the performance index of the platform in wafer level electrical parameter measurement is given.The probe card solution provided by the platform can realize 48 channel parallel irradiation bias and effect test,and the leakage current is less than 10 pA at low voltage.Finally,the total dose effect of 40 nm process MOSFET is studied by using this platform,and the effect law and damage mechanism of the device are obtained.The results show that the total dose effect experiment of 10 keV X-ray is of great significance to the research of radiation hardened technology of domestic electronic devices.
作者 马武英 张鹏飞 陈伟 姚志斌 丛培天 何宝平 董观涛 MA Wuying;ZHANG Pengfei;CHEN Wei;YAO Zhibin;CONG Peitian;HE Baoping;DONG Guantao(State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,Northwest Institute of Nuclear Technology,Xi’an 710024,China)
出处 《现代应用物理》 2022年第1期152-156,共5页 Modern Applied Physics
基金 国家自然科学基金资助项目(11690040,11690043)。
关键词 总剂量效应 X射线 实验平台 纳米MOSFET器件 total dose effect X-ray measurement nano device
  • 相关文献

参考文献6

二级参考文献27

  • 1罗宏伟,恩云飞,王涛,师谦.一种新的辐射试验技术——低能X射线辐照[J].电子产品可靠性与环境试验,2004,22(3):56-59. 被引量:3
  • 2何玉娟,师谦,李斌,罗宏伟,林丽.MOS器件界面态与陷阱电荷分离方法研究[J].电子产品可靠性与环境试验,2006,24(4):26-29. 被引量:7
  • 3Fleetwood D M, Winokour P S, Lorence L J, et al. The Response of MOS Devices to Dose-Enhanced Low-Energy Radiation [J] . IEEE Trans. Nuc. Sci., 1985, 32 (6):4369.
  • 4Fleetwood D M, Beegle R W, Sexton F W, et al. Using a 10-keV X-Ray Source for Hardness Assurance [J] . IEEE Trans. Nucl., Sci., 1986, 33 (6): 1330.
  • 5Lelis A J, Oldham T R, Boesch H E, et al. The Nature of the Trapped Hole Annealing Process [J] . IEEE Trans.Nuc. Sci. , 1989, 36 (6): 1808.
  • 6Lelis A J, Boesch H E, Oldham T R, et al. Reversibility of Trapped Hole Annealing [J] . IEEE Trans. Nuc. Sci.,1988, 35 (6): 1186.
  • 7Fleetwood D M, Winokur P S, Schwank J R. Using Laboratory X-Ray and Cobalt-60 Irradiations to Predict CMOS Device Response in Strategic and Space Environments [J] . IEEE Trans. Nuc. Sci., 1988, 35 (6):1497.
  • 8Benedetto J M, Boesch H E Jr. The Relationship between 60Co and 10-keV X-Ray Damage in MOS Device [J] .IEEE Trans. Nuc. Sci., 1986, 33 (6): 1318-1323.
  • 9SCH L P, SCH J R. Radiation Effects on Surface Micromachined Comb Drives and Microengines [J].IEEE Trans. Nuc. Sci., 1998, 45 (6) : 2789-2798.
  • 10Knudson A R, Buchner S, McDonald P, et al. The effects of Radiation on MEMS Accelerometer [J] . IEEE Trans.Nuc. Sci., 1996, 43 (6): 3122-3126.

共引文献9

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部