期刊文献+

基于双高斯纹理滤波模板和极值点韦伯对比度的圆柱锂电池凹坑缺陷检测 被引量:3

Pit Defect Detection of Cylindrical Lithium Battery Based on Double Gaussian Texture Filtering Template and Extreme Point Weber Contrast
下载PDF
导出
摘要 本文针对圆柱锂电池表面图像具有亮度不均匀、金属表面反射不均、氧化锈斑和高亮噪声点等问题,提出一种基于机器视觉的解决方案.采用定义的双高斯纹理滤波模板与图像进行卷积,提取图像每列的灰度分布曲线,采用定义的极值点韦伯对比度选择曲线上突变点的阈值,根据先验知识筛选出凹坑候选区域,利用区域特征和灰度特征排除非凹坑纹理.测试结果表明,所提方法的拒真率(false rejection rate)和认假率(false accept rate)分别为5.49%和5.38%,亮度不均匀和金属表面反射不均没有对凹坑检测产生影响. A solution based on machine vision is proposed to solve the problems of surface image of cylindrical lithi⁃um battery,such as uneven brightness,uneven reflection on metal surface,oxidation rust spots and highlighting noise points.A defined double Gaussian texture filtering template was used to convolve with the image.The grayscale distribu⁃tion curve of each column of the image was extracted.The extraction threshold of the discontinuous point on the grayscale distribution curve was calculated by using the defined extreme point Weber contrast.The candidate pit regions were screened out according to the prior knowledge.The non-pit textures were excluded by using region features and gray value features.The test results indicate the false rejection rate(FRR)and false accept rate(FAR)are 5.49 percent and 5.38 percent respectively.And the uneven brightness and uneven reflection had no effect on pit detection.
作者 郭绍陶 苑玮琦 GUO Shao-tao;YUAN Wei-qi(Computer Vision Group,Shenyang University of Technology,Shenyang,Liaoning 110870,China;Key Laboratory of Machine Vision,Shenyang,Liaoning 110870,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第3期637-642,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61271365)。
关键词 双高斯纹理滤波模板 极值点韦伯对比度 圆柱锂电池 凹坑 灰度分布曲线 机器视觉 double Gaussian texture filtering template extreme point Weber contrast cylindrical lithium battery pit grayscale distribution curve machine vision
  • 相关文献

参考文献4

二级参考文献55

  • 1童莉,平西建,李磊.一种基于自适应模糊线段的离散曲率估计[J].计算机辅助设计与图形学学报,2007,19(5):589-594. 被引量:5
  • 2李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 3杜彦良,牛学勤.现代轨道交通技术与装备[M].北京:科学出版社,2012.
  • 4KUMAR S. A study of the rail degradation process to pre- dict rail breaks [ D 1- Lule~ University of Technology, 2006.
  • 5JASIONIENE E, ~UKAUSKAS E. The ultrasonic wave interaction with porosity defects in welded rail head [ J ]. Uhragarsas (Ultrasound) , 2010, 65 ( 1 ) : 12-18.
  • 6VIDAUD M, ZWANENBURG W J. Current situation on rolling contact fatigue-a rail wear phenomenon [ C J. Pro- ceedings of the 9th Swiss Transport Research Conference, 2009 : 9-11.
  • 7MARINO F, DISTANTE A, MAZZEO P L,et al. A real- time visual inspection system for railway maintenance: Automatic hexagonal-headed bolts detection systems [ J J. IEEE Transactions on Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3) :418-428.
  • 8PAPAELIAS M P, ROBERTS C, DAVIS C L. A review on non-destructive evaluation of rails : state-of-the-art and future development [ J ]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 367-384.
  • 9MANDRIOTA C,NITYI M, ANCONA N, et al. Filter- based feature selection for rail defect detection [ J 1. Ma- chine Vision and Applications, 2004, 15(4) : 179-185.
  • 10SHAH M. Automated visual inspection/detection of rail- road track[ R]. Florida: Computer Vision Lab, Universi- ty of Central Florida, 2010.

共引文献144

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部