摘要
针对MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)器件故障预测与健康管理问题,提出了一种长短时记忆(Long Short-Term Memory,LSTM)算法与离散隐马尔可夫模型(Discrete Hidden Markov Model,DHMM)相结合的故障预测新方法.该方法利用LSTM算法预测器件状态发展趋势;用自回归(AutoRegressive,AR)模型提取故障信息特征;以DHMM建立特征向量和退化等级之间的映射关系;在LSTM-DHMM模型预测结果的基础上,结合失效阈值排除虚警并预测故障时间,预测误差小于10%,精度较高.与GRU-DHMM(Gated Recurrent Unit Discrete Hidden Markov Model)、GRU-SVM(Gated Recurrent Unit Support Vector Machine)、LSTM-SVM(Long Short-Term Memory Support Vector Machine)方法进行对比分析,结果表明,LSTM-DHMM的预测准确率高于其他三种方案,能有效识别实验器件健康状态、较好预测故障时间,具有有效性和优越性.
Aiming at the problem of MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)device prognos⁃tic and health management,a fault prediction method combining long short term memory(LSTM)algorithm and discrete hidden Markov model(DHMM)is proposed to identify the health status and predict the fault time of MOSFET devices.In this method,LSTM algorithm is used to predict the development trend of device state;autoregressive(AR)model is used as the feature extraction method;DHMM is used to establish the mapping relationship between feature vector and degradation level;based on the prediction results of LSTM-DHMM model,false alarm is eliminated and fault time is predicted by com⁃bining with the failure threshold.The prediction error is less than 10%and the accuracy is high.Compared with singlestress GRU-DHMM(Gated Recurrent Unit Discrete Hidden Markov Model)、GRU-SVM(Gated Recurrent Unit Support Vector Machine)and LSTM-SVM(Long Short-Term Memory Support Vector Machine),the proposed method is superior to the other four schemes in prediction accuracy and rationality,the results show that the prediction accuracy of the proposed method is higher than that of the other three schemes,and the proposed method can effectively identify the health state of the experi⁃mental devices and predict the fault time well,which is effective and superior.
作者
张明宇
王琦
于洋
ZHANG Ming-yu;WANG Qi;YU Yang(Shool of Information Science and Engineering,Shenyang University of Technology,Shenyang,Liaoning 110870,China;Liaoning University of Technology,Jinzhou,Liaoning 121001,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2022年第3期643-651,共9页
Acta Electronica Sinica
基金
中航创新基金(No.sh2012-18)。