期刊文献+

Investigating the physics of disruptions with real-time tomography at JET

下载PDF
导出
摘要 As JET is developing and testing operational scenarios for higher fusion performance,an increase in pulse disruptivity is being observed.On a deeper analysis,we find that several radiative phenomena play an active role in determining the outcome of the pulse.The analysis is enabled by the use of real-time tomography based on the bolometer diagnostic.Even though plasma tomography is an inverse problem,we use machine learning to train a forward model that provides the radiation profile directly,based on a single matrix multiplication step.This model is used to investigate radiative phenomena including sawtooth crashes,ELMs and MARFE,and their relationship to the radiated power in different regions of interest.In particular,we use realtime tomography to monitor the core region,and to throw an alarm whenever core radiation exceeds a certain threshold.Our results suggest that this measure alone can anticipate a significant fraction of disruptions in the JET baseline scenario.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第3期80-88,共9页 等离子体科学和技术(英文版)
基金 This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No.633053.The views and opinions expressed herein do not necessarily reflect those of the European Commission.IPFN(Instituto de Plasmas e Fusão Nuclear)received financial support from FCT(Fundação para a Ciência e a Tecnologia)through projects UIDB/50010/2020 and UIDP/50010/2020.The authors are thankful for the granted use of computational resources provided by CCFE/UKAEA at Culham,UK.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部