期刊文献+

基于CNN_LSTM模型的复杂支路故障电弧检测 被引量:5

Fault arc detection of complex branch based on CNN_LSTM model
下载PDF
导出
摘要 在低压交流配电系统中,当多支路并联的复杂系统的某1支路中出现串联电弧故障时,识别难度大幅提升。为了预防此类情况引发的电气火灾,提出1种卷积神经网络(CNN)与长短时记忆网络(LSTM)结合的串联故障电弧检测方法。首先,搭建实验平台用以采集不同负载在不同支路下发生故障时和正常工作时的干路电流数据;然后,构建CNN_LSTM模型并做出相应改进,将电流数据直接输入到模型中,由模型自主提取波形特征并进行分类。研究结果表明:该方法可以快速、准确地识别出电弧故障,准确率达99.04%以上,且能够较为准确地检测出是哪类负载所在的支路发生电弧故障,准确率达97.90%,可为复杂支路下的电弧故障识别研究提供参考。 In the low voltage AC distribution system,the difficulty of identification is greatly increased when the series arc fault occurs in one branch of the complex system with multiple branches in parallel.To prevent the electrical fires caused by such conditions,a detection method of series fault arc combining with the convolutional neural network(CNN)and long short-time memory network(LSTM)was proposed.Firstly,an experimental platform was built to collect the data of the trunk circuit current of different loads under different branches at fault and normal operation.Then the CNN_LSTM model was built and improved accordingly.The current data was directly input into the model,and the waveform features were extracted and classified by the model independently.The results showed that this method could quickly and accurately identify the arc faults,and the accuracy reached more than 99.04%.Moreover,it could more accurately detect the branch where the arc fault occurred with which kind of load,with the accuracy of 97.90%.It provides reference for the research of arc fault identification under complex branches.
作者 余琼芳 徐静 杨艺 YU Qiongfang;XU Jing;YANG Yi(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo Henan 454003,China;Postdoctoral Programme of Beijing Research Institute,Dalian University of Technology,Beijing 100000,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2022年第4期204-210,共7页 Journal of Safety Science and Technology
基金 国家自然科学基金项目(61601172)。
关键词 低压交流系统 串联故障电弧 复杂支路 支路故障 卷积神经网络 长短时记忆网络 low voltage AC system series fault arc complex branch branch fault convolutional neural network long short-term memory network
  • 相关文献

参考文献8

二级参考文献76

共引文献129

同被引文献42

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部