期刊文献+

基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用

Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process
原文传递
导出
摘要 传统的电活性微生物(Electro-Active Bacteria,EAB)主导的胞外电子传递(Extracellular Electron Transfer,EET)效率较低,极大程度地限制了微生物电催化在环境及工业中的应用。为打破这一瓶颈,近年来多国科学家尝试开发先进的催化材料以强化生物电催化体系(Bio-Electrocatalytic System,BES)中的电子传递效能。借用材料科学、电微生物学及合成生物学技术等多学科手段尝试将传统无机催化材料及电活性微生物进行理性优化,将有望强化电子的传递通量和效率。这种优化升级推动了传统单一的无机催化材料向活体生物催化材料过渡,并有望朝着向更精细化、智能可控的先进材料升级改造,也为拓展先进材料的规模化应用提供更有利的技术支撑。本文对现阶段几种强化EET的有效手段用以有效构筑BES展开综述,包括了微生物-石墨烯改性复合材料、原位杂化光催化半导体材料自组装微生物、核/壳装配的生物材料及接种基因工程菌等内容,最后总结了微生物活体生物材料所面临的挑战及未来在环境应用中所面临的机遇。 The low extracellular electron transfer(EET)efficiency dominated by electro-active bacteria(EAB)in traditional bio-electrocatalytic systems(BESs)has largely restrained the applications of microbial electrocatalysis in environmental and industrial fields.To break this bottleneck,many scientists from the world attempted to develop advanced catalysts to improve the efficiency of electron transfer in BESs.It is expected that rational optimization by multi-disciplines technologies,including material science,electronic microbiology and synthetic biology,will improve the electron flux and efficiency of electron transfer.This optimization might promote the transition from traditional inorganic catalysts towards living catalytic biomaterials which promises to upgrade to be more precise,intelligent and controllable advanced materials in the future.The promotion will provide more beneficial technical support for the large scale application of advanced materials.Herein,this paper summarizes the effective constructions of several kinds of BESs(including employing graphene/microbes composited materials,in-situ semiconducting photocatalytic self-assembled biohybrids,core/shell-coated biohybrids and genetically manipulated engineering strains).In addition,the mechanisms regarding the strategies for strengthening EET are also elaborated in this paper.At last,current challenges that exist for microbes-based living biomaterials and underlying opportunities of biomaterials used in more environmental applications in the future are summarized.
作者 赵聪媛 张静 陈铮 李建 舒烈琳 纪晓亮 Congyuan Zhao;Jing Zhang;Zheng Chen;Jian Li;Lielin Shu;Xiaoliang Ji(School of Public Health and Management,Zhejiang Provincial Key Laboratory of Watershed Science&Health,Wenzhou Medical University,Wenzhou 325035,China;Fujian Provincial Key Lab of Coastal Basin Environment,Fujian Polytechnic Normal University,Fuqing 350300,China;School of Environmental Science&Engineering,Tan Kah Kee College,Xiamen University,Zhangzhou 363105,China)
出处 《化学进展》 SCIE CAS CSCD 北大核心 2022年第2期397-410,共14页 Progress in Chemistry
基金 “光健康”国家重点研发计划(No.2017YFB0403700) 浙江省公益技术应用研究项目(No.LGF22E080002) 浙江省教育厅一般科研项目(No.Y202045506) 国家自然科学基金项目(No.41807035)资助。
关键词 胞外电子传递 生物电催化体系 半导体材料 合成生物学 电子流通量 extracellular electron transfer(EET) bio-electrocatalytic system(BES) semiconducting materials synthetic biology electron flux
  • 相关文献

参考文献3

二级参考文献32

  • 1BEN Y S, BOUALLAGUI Z, SAYADI S, et al. 2012. Catalytic behavior and detoxifying abilityof an a typical homotrimeric laccase from the thermophilic strain Scytalidiumthermophilum on selected azo and triaryl methane dyes[J]. Journal of Molecular Catalysis B-Enzymatic, 79: 41-48.
  • 2HEEMKEN O P, RE1NCKE H, STACHEI B. 2001. The occurrence of xenoestrogens in the Elbe river and the North Sea[J]. Chemosphere, 45(3): 245-259.
  • 3IREN M, ANTONELLA G, SLIVIA T. 2008. Crystal structure of the blue multicoooer oxidase from the white-rot fungus Trametestrogii complexde with p-toluate[J]. Inorganica Chemica Acta, 361(14): 4129-4137.
  • 4JIANG D S, LONG S Y. 2005. Immobilization of pycnoporussanguineus laccase on magnetic chitosan microspheres[J]. Biochemical Engineering Journal, 25 (1): 15-231.
  • 5JOHANNES C, AJCHERCZYK M. 2000. Laccase activity tests and |accase inhibitors[J]. J. Biotechnol, 78(2): 193-199.
  • 6KANG J H, KONDO F. 2002. Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Chemosphere, 49: 493-498.
  • 7KHANI Z, JOLIVALT C, CRETIONM, et al. 2006. Alginate/Carbon composite beads for laccase and glucose oxidase encapsulation: applicat ion in biofuel cell technology[J]. BiotechnologyLetters, 28(22) 1779-17861.
  • 8KUMAR V V, KUMAR M P P, THIRUVENKADARAVI K V. 2012. Preparation and characterization of porous cross linked laccase aggregates for the decolorization of triphenyl methane and reactive dyes[J]. Bioresource Technology, 119: 28-34.
  • 9LEE K M, KALYANI D, TIWAR1.2012. Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowiali polytica[J]. Bioresource Technology, 123: 636-645.
  • 10LI D, MULLER M B, GILJES, et al. 2008. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nature Nanotechnology 3: 101-105.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部