摘要
以提升巢湖蓝藻水华生态大数据的融合效率、降低融合误差为目的,研究基于智慧全景的巢湖蓝藻水华生态大数据融合算法。通过基于智慧全景的生态数据感知过程完成巢湖蓝藻水华生态大数据的感知、采集和存储,将感知的大数据输入正交基前向神经网络中,实现大数据融合;采用萤火虫优化算法优化神经网络融合过程,实现巢湖蓝藻水华生态大数据的高效融合。测试结果表明该算法具有较高的巢湖蓝藻水华生态大数据融合效率,融合误差小,可有效提升巢湖蓝藻水华生态大数据的使用率和管理程度。
For the purpose of improving the fusion efficiency of cyanobacteria bloom ecological big data in Chaohu Lake and reducing the fusion error,the fusion algorithm of cyanobacteria bloom ecological big data in Chaohu Lake is researched based on the intelligent panorama.The perception,collection and storage of the ecological big data of Chaohu cyanobacteria blooms are completeed through the ecological data perception process based on the intelligent panorama,and the perceived big data are inputed into the orthogonal basis forward neural network to achieve big data fusion,and the firefly optimization algorithm is used to optimize the nerve.The network integration process realizes the efficient integration of big data of Chaohu cyanobacteria bloom ecology.The test results show that the algorithm has a high efficiency of fusion of Chaohu cyanobacteria bloom ecological big data,and the fusion error is small,which can effectively improve the utilization rate and management level of Chaohu cyanobacteria bloom ecological big data.
作者
刘运
LIU Yun(College of Information Engineering,Chaohu University,Chaohu 238024,China)
出处
《微型电脑应用》
2022年第4期15-18,共4页
Microcomputer Applications
基金
安徽省自然重点项目(KJ2019A0681)
巢湖学院教学团队项目(ch19jxtd02)。
关键词
智慧全景
巢湖
蓝藻水华生态
大数据融合
数据寻优
intelligent panorama
Chaohu Lake
cyanobacteria bloom ecology
big data fusion
data optimization