期刊文献+

蚁群优化支持向量机的通信信息安全态势预测

Information Security Situation Prediction of Communication Based on Ant Colony Optimization Support Vector Machine
下载PDF
导出
摘要 态势预测可以帮助管理人员了解通信信息的安全状态,支持向量机在通信信息安全态势预测中存在参数优化的难题,为了解决该难题,提高通信信息安全态势预测精度,设计基于蚁群优化支持向量机的通信信息安全态势预测模型。采集通信信息安全态势的历史数据,并通过相空间重构对通信信息安全态势数据进行处理;将重构后的通信信息安全态势数据输入到支持向量机中进行学习,并通过蚁群算法对支持向量机参数进行不断调整,尽量提高通信信息安全态势预测的准确性;与传统支持向量机的通信信息安全态势预测模型进行对比测试。测试结果表明,蚁群优化支持向量机的通信信息安全态势预测精度明显高于传统支持向量机,减少了通信信息安全态势预测误差,可以为通信信息安全管理人员提供有价值的参考信息。 Situation prediction can help administrators to understand the future security status of communication information.Support vector machine(SVM)has the problem of parameter optimization in communication information security situation prediction.In order to solve this problem and improve the accuracy of communication information security situation prediction,a communication information security situation prediction model based on ant colony optimization support vector machine is designed.Historical data of communication information security situation is collected,communication information security situation data is reconstructed through phase space reconstruction,and data is input into support vector machine for learning.The parameters of support vector machine are continuously adjusted through ant colony algorithm to improve the accuracy of communication information security situation prediction.It is compared with the communication information security situation prediction model of traditional support vector machine.The results show that the prediction accuracy of communication information security situation of ant colony optimization support vector machine is significantly higher than that of traditional support vector machine,which reduces the error of communication information security situation prediction,and can provide valuable reference information for communication information security managers.
作者 王彬筌 蒋亚坤 张仕鹏 李晓耕 韩校 孙浩 WANG Binquan;JIANG Yakun;ZHANG Shipeng;LI Xiaogeng;HAN Xiao;SUN Hao(Yunnan Electric Power Dispatch Control Center,Kunming 650041,China;China Energy Engineering Group Guangdong Electric Power Design Institute Co.Ltd.,Guangzhou 510663,China;School of Electric Power,South China University of Technology,Guangzhou 510641,China)
出处 《微型电脑应用》 2022年第4期100-102,116,共4页 Microcomputer Applications
关键词 通信技术 蚁群算法 支持向量机 安全态势 对比测试 communication technology ant colony algorithm support vector machine security situation comparative test
  • 相关文献

参考文献14

二级参考文献114

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部