摘要
提出了一种用于动态嵌套网格的隐式插值方法.基于插值条件,通过数学运算重新构建了代数方程组,实现了不同计算域的耦合.该方法适用于任意离散格式,无须迭代求解即可耦合分离的计算域.耦合格式具有明确的物理意义,插值条件可视为狄利克雷传输条件,通过重构系数矩阵和右端项成功施加了纽曼条件.借助点对点元素替换的方式,能够简单高效地重构代数方程组,不增加额外的计算量,易于编程实现.最后,通过圆柱横向振荡、涡激振动及颗粒沉降等算例验证了该方法的精确性.
An implicit interpolation method was developed for dynamic overset grid.Based on the interpolation condition,the algebraic equations were reconstructed through mathematical manipulation to couple different domains.The present method could be applied to any discretization scheme,and the iterative process or the iterative solver was unnecessary to couple different domains.The current method developed with the mathematical manipulation had a clear physical meaning.The interpolation condition was regarded as the Dirichlet condition,while the Neuman condition was imposed by the reconstruction of the system matrix and right end item.With the point-by-point replacement,the process of reconstruction was simple and efficient to implement without additional computations.Finally,the reliability and the accuracy of the proposed method were validated by several benchmark problems,including in-line oscillation cylinder,vortex-induced vibration,and sedimentation of a circular particle.
作者
牟凯龙
毛佳
朱晗玥
赵兰浩
MU Kailong;MAO Jia;ZHU Hanyue;ZHAO Lanhao(College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第1期44-49,共6页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(52009034)
国家重点研发计划资助项目(2018YFC0406705)
中央高校基本科研业务费专项资金资助项目(B200202238)
霍英东教育基金会第15届高等院校青年教师基金资助项目(151073)。
关键词
嵌套网格
隐式插值
狄利克雷条件
纽曼条件
耦合格式
overset grid
implicit interpolation
Dirichlet condition
Neuman condition
coupling strategy