期刊文献+

最大可满足性问题的算法研究综述 被引量:3

Survey on algorithms for the maximum satisfiability problem
原文传递
导出
摘要 最大可满足性问题(maximum satisfiability,MaxSAT)是一个著名的、具有NP难度的组合优化问题.本研究总结了近年来求解最大可满足性问题的各类算法.首先,给出了最大可满足性问题的定义;然后,基于完备算法和非完备算法两个类型,对求解MaxSAT的各类算法进行了综述.其中完备算法包括分支定界算法和迭代调用可满足性问题求解器的算法,非完备算法包括近似算法、基于最小校正子集的算法和局部搜索算法;最后,分析和对比了各类求解算法的优劣,并对最大可满足性问题求解所面临的挑战及可能的研究方向进行了讨论和展望. The maximum satisfiability problem(MaxSAT)is a well-known and NP-hard combinatorial optimization problem.A survey on various algorithms for the maximum satisfiability problem proposed in recent years was provided.Firstly,the problem definition of the maximum satisfiability problem was provided.Then,the algorithms for solving MaxSAT were summarized,including complete algorithms and incomplete algorithms.The complete algorithms include the branch and bound algorithms,and the algorithms that solving the problem by iteratively calling of a solver for the satisfiability problem.The incomplete algorithms include the approximation algorithms,the algorithms based on minimal correction subset,and the local search algorithms.In the end,the advantages and disadvantages for each kind of algorithms were compared,and the challenges and possible research directions for solving the maximum satisfiability problem were further discussed and prospected.
作者 何琨 郑迥之 HE Kun;ZHENG Jiongzhi(School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期82-95,共14页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(62076105).
关键词 最大可满足性问题 NP难度 组合优化 完备算法 非完备算法 maximum satisfiability problem NP-hard combinatorial optimization complete algorithm incomplete algorithm
  • 相关文献

参考文献4

二级参考文献33

  • 1JOHNSON D.Approximation algorithm for combinatorial problems[J].Journal of Computer and System Sciences,1974,9(3):256-278.
  • 2GOEMANS M X,WILLIAMSON D P.New 0.75-approximation algorithms for the maximum satisfiability problem[J].SIAM J Dzsc Math,1994 (7):656-666.
  • 3YANNAKAKIS M.On the approximation of maximum satisfiability[J].Algorithms,1994(17):475-502.
  • 4ASNO T,ONO T,HIRATA T.Approximation algorithms for the maximum satisfiability problem[J].Nordic Journal of Computing,1996,3(4):388-404.
  • 5潘君山,康定山.演化计算[M].北京:清华大学出版社,广西科学技术出版社.2004.
  • 6Federico Heras, Javier Larrosa, Albert Oliveras. MINIMAX- SAT: An efficient weighted MaxSAT solver [J]. Journal of Artificial Intelligence Research, 2008, 31: 1-32.
  • 7Josep Argelieh, Li Chumin, Felip Manya, et al. Analyzing the instances of the MaxSAT evaluation [G]. LNCS 6695: Proceedings of the 14th Theory and Application of Satisfiablity Testing, 2011: 360-361.
  • 8Li Chumin, Manya Felip, Nouredine Mohamedou, et al. Re- solution based lower bounds in MaxSAT [J]. Journal of Con- straints, 2010, 15 (4): 456-484.
  • 9Li Chumin, Manya Felip, Planes Jordi. New inference rules for Max-SAT [J]. Journal of Artificial Intelligenee Research, 2007, 30: 321-329.
  • 10MaxSAT Evaluation Website [CP/OL]. http: //www. max- sat. udl. cat, 2013.

共引文献4

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部