摘要
为深入理解均衡正则恰当(2s,k)-SAT问题的判定难度和可满足性解的分布情况,引入随机实例产生模型,利用一阶矩和二阶矩方法分析可满足性相变现象,给出随机均衡正则恰当(2s,k)-SAT问题可满足的相变点s∗.当s<s∗时,随机均衡正则恰当(2s,k)-SAT实例高概率可满足;当s>s∗时,随机均衡正则恰当(2s,k)-SAT实例高概率不可满足.最后,选取了k=4和k=6的两组数据集进行实验验证,结果表明理论结果与实验结果符合.
To understand the difficulty of determining the equilibrium regular exact(2s,k)-SAT problem and the distribution of satisfiability solutions,a random instance generation model was introduced to analyze the satisfiability phase transition phenomenon using first moment and second moment methods.Set s∗is a threshold,it can be show that F of the stochastic balance regular exact(2s,k)-SAT problem instance is satisfiable with high probability if s<s∗and unsatisfiable with high probability if s>s∗.Finally,two sets of data sets with k=4 and k=6 were selected for experimental verification,and the results show that the theoretical results are consistent with the experimental results.
作者
王晓峰
于卓
周锦程
许道云
WANG Xiaofeng;YU Zhuo;ZHOU Jincheng;XU Daoyun(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;The Key Laboratory of Images&Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China;School of Computer Science and Technology,Guizhou University,Guiyang 550025,China;School of Mathematics and Statistics,Qiannan Normal University for Nationalities,Duyun 558000,Guizhou China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第2期105-111,共7页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(62062001,61762019,61862051,61962002)
宁夏自然科学基金资助项目(2020AAC03214,2020AAC03219)
北方民族大学重大专项资助项目(ZDZX201901).