期刊文献+

MXene的制备及其在高比能碱金属电池中的应用 被引量:1

Preparation of MXene and its application in high specific energy alkaline metal batteries
下载PDF
导出
摘要 双碳目标下,具有高比能量的碱金属电池受到广泛关注,但电池循环过程中枝晶的生长会带来严重安全隐患。新型二维材料(MXene)具有优异的导电性、充足的层间空间、稳定的层状结构,作为金属负极保护材料具有应用价值。首先介绍了MXene的不同制备方法,之后对MXene在金属负极保护领域的应用现状进行了分析和评价。其中,重点总结了三大类MXene与碱金属复合的方法(滚压法、熔融灌注法、电沉积法),指出当前方法普遍存在易氧化、操作难度大、难以大规模生产等弊端。最后提出MXene的发展应参考石墨烯材料的发展策略,更多地利用其表面活性官能团和片层结构,构筑独立集流体或保护层以获得更好的循环性能。 Under the dual‐carbon goal,alkali metal batteries with high specific energy have received widespread attention,but the growth of dendrites during battery cycling will bring serious safety hazards.The new two‐dimensional material MXene has excellent electrical conductivity,sufficient interlayer space,and stable layered structure.It has application value as metal anode protective material.Firstly,the different preparation methods of MXene were introduced,and then the application status of MXene in the field of metal anode protection were analyzed and evaluated.Among them,the three main types of MXene and alkali metal composite methods(rolling method,melt pouring method,electrodeposition method)were summarized,and it was pointed out that the current methods generally had disadvantages such as easy oxidation,difficult operation,and difficulty in large‐scale production.Finally,it was proposed that the development of MXene should refer to the development strategy of graphene materials,and make more use of its surface active functional groups and sheet structure to build independent current collectors or protective layers to obtain better cycle performance.
作者 沙霖 王鹏飞 史发年 SHA Lin;WANG Pengfei;SHI Fanian(Shenyang University of Technology,School of Environmental and Chemical Engineering,Shenyang 110870,China)
出处 《无机盐工业》 CAS CSCD 北大核心 2022年第5期19-27,共9页 Inorganic Chemicals Industry
基金 国家自然科学基金项目(21571132)。
关键词 双碳目标 碱金属电池 高比能 MXene dual‐carbon goal alkali metal battery high specific energy MXene
  • 相关文献

参考文献13

二级参考文献103

  • 1鲁小珍,金永灿,杨益琴,曹云峰,李忠正.木质素固沙材料应用于沙漠化地区植被恢复的研究[J].林业科学,2005,41(4):67-71. 被引量:23
  • 2K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004).
  • 3A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007).
  • 4S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40(5), 2644 (2011).
  • 5V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011).
  • 6T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57(7), 1061 (2012).
  • 7Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale 5(11), 4541 (2013).
  • 8Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013).
  • 9M. Naguib and Y, Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48(1), 128 (2015).
  • 10Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014).

共引文献200

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部