期刊文献+

关于说谎者悖论句变元理论的几点评论

Remarks on the“Theory of Sentence Variable”for the Liar Paradox
下载PDF
导出
摘要 说谎者悖论是最古老也最难以应付的悖论之一。本文以塔尔斯基的语言分层理论和克里普克的真值间隙理论为背景和参照点来比较文兰教授所提出的句变元理论解悖方案。文章主要从应对不同类型的说谎者悖论以及其他类似的非语义悖论(尤其是模态说谎者和认知说谎者)的角度出发,总结了句变元理论的两个独特之处。第一它揭示出自指以及真谓词在说谎者悖论中显明但不显著的作用;第二它可以应付大量结构相似的悖论并给出统一的解决方案。文章最后比较了克里普克的有根性概念和文兰的方程有解概念的异同,并提出了一些可以继续探索的相关问题。 The Liar Paradox is one of the oldest and most recalcitrant paradoxes. This paper investigates a new theory, the “theory of sentence variable” proposed by Lan Wen for the solution of the Liar, in comparison with previous famous solutions, such as Tarski’s hierarchy-of-language theory and Kripke’s truth-gap theory. By focusing on the perspective of dealing with different types of the Liar and other related non-semantic paradoxes(especially the modal Liar and the epistemic Liar), the paper summarizes two characteristics of the new theory. Firstly, it reveals the manifest but not salient role of self-reference and the truth predicate in the generation of the Liar;secondly, the new theory can accommodate a large class of paradoxes with similar structure and provide a uniform solution.The paper concludes with a tentative comparison between Kripke’s idea of “groundedness” and Wen’s “existence of a solution for the equation”, and hints at some problems worth further researching.
作者 陈龙 Long Chen(School of Philosophy,Beijing Normal University)
出处 《逻辑学研究》 CSSCI 2022年第2期21-28,共8页 Studies in Logic
基金 中央高校基本科研业务费专项资金(2019NTSS35)资助。
  • 相关文献

参考文献2

二级参考文献7

  • 1Chihara, C. , 1979 ,The semantic paradoxes: A diagnostic investigation, in The Philosophical Review 88(4) :pp. 590 -618.
  • 2Diestel, R. , 2000, Graph Theory, 2nd. edition, New York : Springer-Verlag.
  • 3Herzberger, H. G. , 1982, "Naive semantics and the Liar paradox", in Journal of Philosophy 79 : pp. 479 - 497.
  • 4Herzberger, H. G. 1984,"Notes on naive semantics", in Martin, pp. 133 -174.
  • 5Martin, R.L. , 1984, Recent Essays on Truth and the Liar Paradox, Oxford: Oxford University Press.
  • 6Russell, B. , 1908, "Mathematical logic as based on the theory of types", in American Journal of Mathematics 30.
  • 7Wittgenstein, L., 1975, Philosophical Remarks, Oxford: Basil Blackwell.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部