期刊文献+

基于布谷鸟搜索的地震属性聚类方法及其在塔中地区碳酸盐岩礁滩储层的应用

Seismic attribute clustering based on Cuckoo Search and its application in carbonate reef-shoal reservoirs in Middle Tarim Basin
下载PDF
导出
摘要 地震属性聚类是提取隐藏在地震数据中地质特征的重要途径,K均值是最常见的聚类方法之一,方法简单且高效,但是该算法存在局部收敛、结果依赖于初值等问题。为了解决该问题,将具有全局寻优能力和更高搜索效率的布谷鸟搜索算法引入到地震属性聚类中,通过扩大搜索范围,增加种群数量,更容易跳出局部极值。结果表明,通过2个理论数据集试验证明基于布谷鸟搜索的聚类算法能较好地发现非线性数据结构中低维特征。通过实际地震数据应用可以看出基于布谷鸟搜索的地震属性聚类算法能比较准确地刻画塔里木盆地塔中地区碳酸盐岩礁滩储层和油气的分布。 Seismic attribute clustering is an important approach to extract geological features from seismic data.Kmeans,one of the most popular clustering method,is very simple and efficient,but has problems of local convergence and its results highly depending on initial value.In order to solve this problem,Cuckoo Search algorithm characterized by global optimizing capability and higher search efficiency is introduced into seismic attribute clustering.Through widening search scope and increasing population quantity,it is easy to jump out local extremum.Proved by 2 theoretical data set tests,the clustering method based on Cuckoo Search can better find middle and low dimensional features from non-linear data structure.Actual application of seismic data shows that seismic attribute clustering method based on Cuckoo Search can correctly characterize distributions of carbonate reef-shoal reservoir and hydrocarbon in Middle Tarim Basin.
作者 曹成寅 高赞 CAO Chengyin;GAO Zan(Beijing Research Institute of Uranium Geology,Beijing 100029,China;Petroleum Industry Press,Beijing 100011,China)
出处 《大庆石油地质与开发》 CAS CSCD 北大核心 2022年第1期134-140,共7页 Petroleum Geology & Oilfield Development in Daqing
关键词 布谷鸟搜索 地震属性 聚类 碳酸盐岩 储层预测 Cuckoo Search(CS) seismic attribute clustering carbonate rock reservoir prediction
  • 相关文献

参考文献3

二级参考文献22

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部