期刊文献+

模糊特征的top-k平均效用co-location模式挖掘 被引量:2

Top-k Average Utility Co-location Pattern Mining of Fuzzy Features
下载PDF
导出
摘要 空间并置(co-location)模式是指在空间邻域内空间特征的实例频繁地出现在一起所形成的非空特征子集。人们已经对确定数据和不确定数据的top-k空间co-location模式挖掘进行了相关研究,但是针对模糊特征的top-k平均效用co-location模式挖掘的研究还没有。提出模糊特征的top-k平均效用co-location模式挖掘。首先,定义了模糊特征的top-k平均效用co-location模式的相关概念,分析了模式的扩展模糊平均效用具有的“向下闭合”性质。其次,设计了一种基于扩展模糊平均效用值挖掘top-k平均效用co-location模式的算法,解决模糊平均效用不满足“向下闭合”性质的问题。在此基础上,又提出了一种基于局部扩展模糊平均效用的剪枝方法,有效地减小了top-k平均效用co-location模式挖掘的搜索空间,进一步提高了挖掘算法的效率。最后,在真实和合成数据集上验证了所提出算法的实用性、高效性和鲁棒性。 The spatial co-location pattern refers to a subset of non-empty spatial features whose instances are frequently located together in a spatial neighborhood.Researchers have carried out relevant research of top-k spatial co location pattern mining for deterministic data and uncertain data,but there is no research on top-k average utility co location pattern mining for fuzzy features.Therefore,this paper proposes top-k average utility co-location pattern mining for fuzzy features.Firstly,the relevant concepts of top k average utility co-location patterns of fuzzy features are defined,and the“downward close”nature of the extended fuzzy average utility of the pattern is analyzed.Secondly,an algorithm of mining top k average utility co-location patterns based on extended fuzzy average utility value is designed,solving the problem that the fuzzy average utility does not satisfy the“downward close”nature.Thirdly,a pruning method based on a locally extended fuzzy average utility is proposed,which effectively reduces the search space for top k average utility co-location pattern mining,and further improves the efficiency of the mining algorithm.Finally,the practicability,efficiency and robustness of the proposed algorithm are verified on real and synthetic datasets.
作者 李金红 王丽珍 周丽华 LI Jinhong;WANG Lizhen;ZHOU Lihua(School of Information Science and Engineering,Yunnan University,Kunming 650500,China)
出处 《计算机科学与探索》 CSCD 北大核心 2022年第5期1053-1063,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金(61966036,61662086) 云南省创新团队建设项目(2018HC019)。
关键词 空间co-location模式 高平均效用 模糊特征 TOP-K spatial co-location pattern high-average utility fuzzy feature top-k
  • 相关文献

参考文献3

二级参考文献14

  • 1Huang Y, Shekhar S, Xiong H. Discovering colocation patterns from spatial data sets: A general approach. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12) : 1472- 1485.
  • 2Yoo J S, Shekhar S. A partial join approach for mining colocation patterns//Proceedings of the ACM International Symposium on Advances in Geographic Information Systems (ACMGIS). Washington, USA, 2004:241 -249.
  • 3Yoo J S, Shekhar S, Celik M. A join less approach for co location pattern mining: A summary of resuhs//Proceedings of the IEEE International Conference on Data Mining (ICDM). Houston, USA, 2005:813 816.
  • 4Wang Li-Zhen, Bao Yu Zhen, l.u J, Yip J. A new join less approach for co-location pattern mining//Proceedings of the IEEE 8th International Conference on Computer and lnfor mation Technology (CIT 2008). Sydney, AustraLia, 2008 197-202.
  • 5Wang Li-Zhen, Zhou Li-Hua, Lu J. Yip J. An order clique based approach for mining maximal co locations. Information Sciences, 2009, 179(19): 3370 -3382.
  • 6Wang Li-Zhen, Chen Hong-Mei, Zhao Li-Hong et al. Efficiently mining co location rules on interval data//Proceedings of the 6th International Conference on Advanced Data Mining and Applications(ADMA 2010). Chongqing, China, 2010: 477-488.
  • 7Zadeh L. Fuzzy sets. Information and Control, 1965, 8(3) 338-353.
  • 8Altman D. Fuzzy set theoretic approaches for handling im precision in spatial analysis. International Journal of Geo granhical Information Science, 1994, 8(3): 271- 289.
  • 9Schneider M. Fuzzy topological predicates, their properties, and their integration into query languages//Proceedings of the ACM International Symposium on Advances in Geographic Information Systems (ACMGIS). New York, USA, 2001: 9-14.
  • 10Schneider M. Uncertainty management for spatial data in databases: Fuzzy spatial data types//Proceedings of the International Symposium on Advauces in Spatial Databases. Berlin, Germany, 1999:330 351.

共引文献34

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部