期刊文献+

具有限额约束的投资组合优化问题的量子进化算法 被引量:2

A quantum evolutionary algorithm for portfolio optimization problems with constraints of investment limit
下载PDF
导出
摘要 将量子进化算法应用到投资组合优化问题中,设计了一种具有限额约束的投资组合优化问题的量子进化算法.首先,考虑收益与风险的均衡性,提出了一种新的收益风险评判准则,并以该准则为目标优化投资配置;其次,改进了初始种群生成方式,给出了量子染色体的编码、解码技巧及自适应量子门旋转策略;设计检查修复算子将染色体简单解码得到的解修复为问题的可行解.实证分析检验了量子进化算法的可行性和有效性,结果显示,量子进化算法能够有效消除算法早熟问题;设置的风险水平越低,收益率增长越明显;收益率随着风险水平的上升而增大,最后逐渐趋于稳定;算法具有较好的稳定性和可靠性. The quantum evolutionary algorithm is applied to the portfolio optimization problem,a quantum evolutionary algorithm is designed to solve portfolio optimization problem with constraints of investment limit.Firstly,considering the balance between return and risk for an investment portfolio,a new return-risk evaluation criterion is proposed,and the criterion is selected as the target to optimize the investment allocation.Secondly,the generation style of initial quantum population is improved,and the coding and decoding techniques of quantum chromosome,as well as an adaptive rotation strategy for quantum gate are given.Finally,a check repair operator is designed to repair a solution obtained by simple chromosome decoding to a feasible solution.The feasibility and effectiveness of the quantum evolutionary algorithm are verified by empirical analysis,the results show that the algorithm can effectively remove premature convergence of algorithm;the lower the risk level,the greater the increase of return rate;with the increase of risk level,the return rate increases gradually and tends to be stable,the algorithm has stronger stability and reliability.
作者 马宇红 孙亚娜 李兴义 MA Yu-hong;SUN Ya-na;LI Xing-yi(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China;Editorial Department of the University Journal,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2022年第2期25-33,共9页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(51368055)。
关键词 投资组合优化问题 限额约束 量子进化算法 收益风险评判准则 检查修复算子 portfolio optimization problem constraint on investment limit quantum evolutionary algorithm return-risk evaluation criterion check repair operator
  • 相关文献

参考文献2

二级参考文献15

  • 1刘国平,曾强.多目标最优化的粒子群算法[J].杭州师范学院学报(自然科学版),2005,4(1):30-33. 被引量:7
  • 2Sun J,Xu W B. A global search strategy of quantum-behaved particle swarm optimization [ C ]//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems ,2004 : 111 - 116.
  • 3Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[ C ]//Proceedings of 2004 Congress on Evolutionary Computation ,2004:325-331.
  • 4Tappeta R V,Renand J E, Rodriguez J F. An interactive multiobjective optimization design strategy for decision based maltidisciplinnary design [ J ]. Engineering Optimization,2002,34 (5) :523-544.
  • 5Kirkpatrick S,GelattJr C D,Vecchi M P. Optimization by simulated annealing [ J ] Science, 1983,220:671-680.
  • 6Coello C A, Van Veldhuizen D A, Lamont G B. Evolutionary algorithms for solving multi-objective problems [ M ]. New York: Kluwer Academic Publishers,2002-05.
  • 7Chang T J, Meade N, Beasley J E,et al. Heuristics for cardinality constrained portfolio optimisation[ J]. Computers and Operations Research, 2000,27 ( 13 ) : 1271-1302.
  • 8Chalermkraivuth K C, Bollapra-gada S, Clark M C, et al. GE asset management,genworth financial, and GE insurance implement a novel sequential linear programming algorithm for portfolio optimization[ J ]. INFORMS Interfaces,2005.
  • 9Tarascio V. Pareto's methodological approach to economics [ M ]. Chapel Hill, VA : University of North Carolina Press, 1968.
  • 10SUN J, XU WB. A Global Search Strategy of Quantum-behaved ParticIe Swarm Optimization[A]. Proceedings of IEEE Conference on Cybernetics and Intelligent Systems[ C].2004. 111 -116.

共引文献7

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部