期刊文献+

基于StarGANv2的多风格字体生成研究 被引量:1

Research of multi-style font generation based on StarGANv2
下载PDF
导出
摘要 目的:实现多种风格域的无监督字体风格迁移。方法:使用StarGANv2网络模型,对生成器进行改进。引入IBN-Net,将实例标准化(Instance normalization,IN)和批标准化(Batch normalization,BN)结合,形成残差网络的基础模块。然后在此模型的风格编码网络中增加注意力机制,进一步对不同风格字体挖掘关键性区域特征,增强目标域的差异化特征分布,实现对小样本字体图像抽取更加丰富的特征信息。结果:在不同风格字体的数据集上来验证改进模型的有效性,研究表明,在像素级、感知级等评价指标中均优于其他算法。相比原始模型,本文方法生成的汉字图像,FID下降5.12,LPIPS下降0.0621,SSIM增加0.0411。并且视觉上有更好的生成效果,保留了更多的细节信息。结论:改进的模型能够有效的生成高质量的多风格字体汉字。 Aims:This paper aims to realize the unsupervised font style transfer of multiple style domains to get rid of the shackles of data set labels.Methods:We improved the generator with the StarGANv2 net model.IBN-Net was introduced to combine instance normalization(IN)and batch normalization(BN)to form the basic module of the residual network.Then,an attention mechanism was added to the style encoding network of this model to further mine the key regional features of the different styles of fonts,to enhance the differentiated feature distribution of the target domain,and to realize the extraction of more abundant feature information from small sample font images.Results:The effectiveness of the improved model was verified on the datasets of the different styles of fonts;and the results showed that it was superior to other algorithms in the evaluation indicators such as the pixel level and the perception level.Compared with the original model,the Chinese character images generated by this method had a decrease of 5.12 in FID,a decrease of 0.0621 in LPIPS,and an increase of 0.0411 in SSIM.And it had a better visual effect and retained more detailed information.Conclusions:The improved model can effectively generate high-quality multi-style Chinese characters.
作者 李金金 徐向紘 龚心满 LI Jinjin;XU Xianghong;GONG Xinman(College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China;College of Art and Communication,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2022年第1期73-82,共10页 Journal of China University of Metrology
关键词 字体生成 无监督 归一化 注意力机制 多风格 font generation unsupervised normalization attention mechanism multi-style
  • 相关文献

参考文献3

二级参考文献11

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部