期刊文献+

Secure Probabilistic Prediction of Dynamic Thermal Line Rating 被引量:1

原文传递
导出
摘要 Accurate short-term prediction of overhead line(OHL)transmission ampacity can directly affect the efficiency of power system operation and planning.Any overcstiniation of the dynamic thermal line rating(DTLR)can lead to the lifetime degradation and failure of OHLs,safety hazards,etc.This paper presents a secure yet sharp probabilistic model for the hour-ahead prediction of the DTLR.The security of the proposed DTLR limits the frequency of DTLR prediction exceeding the actual DTLR.The model is based on an augmented deep learning architecture that makes use of a wide range of predictors,including historical climatology data and latent variables obtained during DTLR calculation.Furthermore,by introducing a customized cost function,the deep neural network is trained to consider the DTLR security based on the required probability of exceedance while minimizing the deviations of the predicted DTLRs from the actual values.The proposed probabilistic DTLR is developed and verified using recorded experimental data.The simulation results validate the superiority of the proposed DTLR compared with the state-of-the-art prediction models using well-known evaluation metrics.
出处 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期378-387,共10页 现代电力系统与清洁能源学报(英文)
  • 相关文献

参考文献1

共引文献6

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部