期刊文献+

线性化通用EIV平差模型的岭估计解法

Ridge estimation method for linearized general EIV adjustment model
下载PDF
导出
摘要 通用EIV(errors-in-variables)平差模型作为经典平差模型的一般化形式,具有同时顾及多种随机误差的优势.在通用EIV平差模型加权总体最小二乘(WTLS)的线性化估计基础上,引入正则化准则.正则化矩阵为单位矩阵时为岭估计,添加目标函数,通过建立拉格朗日目标函数的最小化求解,导出加权通用EIV平差模型对应的岭估计解式,给出了确定岭参数的U曲线法和L曲线法.计算了通用EIV平差模型的线性化估计、两种岭估计及其对应的方差分量值;验证岭估计对通用EIV模型的线性化估计具有促进性,可减少迭代次数,使得参数方差分量更快趋于平稳,降低参数估计的计算量. As a general form of classical adjustment model,general errors-in-variables(EIV)adjustment model has the advantage of taking into account multiple random errors.Based on the linear estimation of the weighted total least squares of the general EIV adjustment model,the regularization criterion is introduced.When the regularization matrix is the unit matrix,it is called the ridge estimation.The objective function is then added.By establishing the minimization solution of the Lagrange objective function,the ridge estimation solution corresponding to the weighted general EIV adjustment model is derived.The U curve method and L curve method for determining ridge parameters are given.The linear estimation,two ridge estimations and their corresponding variance components of the general EIV adjustment model are calculated.It is validated that ridge estimation can promote the linearization estimation of general EIV model,reduce the times of iterations,make the parameter variance component more stable and reduce the calculation of parameter estimation.
作者 翁烨 邵德盛 甘淑 WENG Ye;SHAO Desheng;GAN Shu(Faculty ofLand Resource Engineering,Kunming University of Science and Technology,Kunming 650093,China;Yunnan Earthquake Agency,Kunming 650041,China;Plateau Mountain Spatial Information Survey Technique Application Engineering Research Center at Yunnan Province's University,Kunming 650093,China)
出处 《全球定位系统》 CSCD 2022年第2期82-89,共8页 Gnss World of China
基金 李建成院士工作站(2015IC015) 国家重点研发计划课题“中国大陆主要活动构造断裂带的分段运动特征研究”(2018YFC1503604).
关键词 通用EIV(errors-in-variables)模型 总体最小二乘(TLS) 线性化估计 岭估计 L曲线 U曲线 general errors-in-variables(EIV)model overall total least squares(TLS) linearized estimation ridge estimation L curve U curve
  • 相关文献

参考文献12

二级参考文献93

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部