期刊文献+

基于未知输入观测器的多智能体一致性控制 被引量:4

Consensus control for multi-agent based on unknown input observer
下载PDF
导出
摘要 现有研究成果大多仅考虑随机噪声或未知输入干扰单一存在的情况,实际工程中两者往往同时存在.在此背景下,本文针对一类含有未知输入干扰和随机噪声的非线性多智能体系统,提出了一种一致性控制协议方法.首先,针对单个智能体系统设计未知输入观测器以消除干扰项对状态估计的影响.参考Kalman滤波器算法来求解状态反馈矩阵,使得输出残差信号的协方差最小,从而增强系统对随机噪声的鲁棒性.然后,基于观测器的状态估计信息,设计了鲁棒一致性控制协议,并将其转化为线性矩阵不等式求解问题.最后,通过一个数值仿真证明了所提方法的正确性和有效性. Most of the existing research results only consider the single existence of random noise or unknown input interference.In actual engineering,both often exist at the same time.In the context,This paper proposes a consensus control protocol method for a class of nonlinear multi-agent systems with unknown input interference and random noise.First,an unknown input observer is designed for a single agent system to eliminate the influence of interference items on state estimation.Refer to the Kalman filter algorithm to solve the state feedback matrix to minimize the covariance of the output residual signal,thereby enhancing the system’s robustness to random noise.Then,based on the state estimation information of the observer,a robust consensus control protocol is designed and convert the problem into a linear matrix inequality problem to solve it.Finally,a numerical simulation proves the correctness and effectiveness of the proposed method.
作者 相国梁 郭胜辉 XIANG Guo-liang;GUO Sheng-hui(College of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou Jiangsu 215009,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第4期682-690,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61703296,61751304) 苏州科技大学科研基金项目(XKZ2018004) 江苏省研究生科研与实践创新计划(KYCX21_3021)资助。
关键词 未知输入观测器 随机噪声 多智能体系统 一致性控制 unknown input observer random noise multi-agent systems consensus control
  • 相关文献

参考文献4

二级参考文献54

  • 1熊坤鹏,卢俊国.具有动态领导节点的多智能体系统一致性分析[J].微型电脑应用,2011(6):25-28. 被引量:1
  • 2Tu J E Stein J L. Model error compensation for bearing temperature and preload estimation[J]. J of Dynamic Systems, Measurement, and Control, 1996, 118(3): 580- 585.
  • 3Ng K Y, Tan C P, Edwards C, et al. New results in robust actuator fault reconstruction for linear uncertain systems using sliding mode observers[J]. Int J of Robust and Nonlinear Control, 2007, 17(14): 1294-1319.
  • 4Boutayeb M, Darouach M, Rafaralahy H. Generalized state-space observers for chaotic synchronization and secure communication[J]. IEEE Trans on Automatic Control, 2002, 49(3): 345-349.
  • 5Hostetter G, Meditch J S. Observing systems with unmeasurable inputs[J]. IEEE Trans on Automatic Control, 1973, 18(3): 307-308.
  • 6Corless M, Tu J. State and input estimation for a class of uncertain systems[J]. Automatica, 1998, 34(6): 757-764.
  • 7Darouach M, Zasadzinski M, Xu S J. Full-order observer for linear systems with unknown inputs[J]. IEEE Trans on Automatic Control, 1994, 39(3): 606-609.
  • 8Luenberger D G. Observers for multivariable systems[J]. IEEE Trans on Automatic Control, 1966, 11(2): 190-197.
  • 9Trinh H, Ha Q E State and input simultaneous estimation for a class of time-delay systems with uncertainties[J]. IEEE Trans on Circuits and Systems - Ⅱ: Express Briefs, 2007, 54(6): 527-531.
  • 10Trinh H, Tran T D, Femando T. Disturbance decoupled observers for systems with unknown inputs[J]. IEEE Trans on Automatic Control, 2008, 53(10): 2397-2402.

共引文献64

同被引文献39

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部