期刊文献+

KdV方程的保结构算法

Structure-preserving algorithm for the KdV equation
下载PDF
导出
摘要 本文以修正项差分格式(有参数和带参数)为工具,运用保持离散守恒量之条件,尝试求得参数的应有特征,由此推得满足KdV方程离散守恒量标准的半离散差分格式。接着给出此类半离散差分格式上的时间方向可能的离散方式,进而让得到的全离散格式能够保持KdV方程要求的离散守恒量。 in this paper,the modified difference schemes with parameters and with parameters are used to determine the characteristics of parameters by maintaining the conditions of discrete conserved quantities,so as to obtain a semi discrete difference scheme satisfying the discrete conserved quantities of KdV equation.Then,the time direction discretization methods of these semi discrete difference schemes are given,so that the fully discrete schemes still keep the discrete conservation of KdV equation.
作者 董慧 Dong Hui(Xi'an Mingde Institute of technology,Xi'an 710124,Shaanxi Province)
出处 《现代科学仪器》 2022年第2期182-185,共4页 Modern Scientific Instruments
关键词 KDV方程 守恒量 半离散差分格式 全离散差分格式 KdV equation conserved quantity semi discrete difference scheme fully discrete difference scheme
  • 相关文献

参考文献4

二级参考文献31

  • 1王廷春,张鲁明.求解广义正则长波方程的守恒差分格式[J].应用数学学报,2006,29(6):1091-1098. 被引量:14
  • 2柏琰,张鲁明.对称正则长波方程的一个守恒差分格式[J].应用数学学报,2007,30(2):248-255. 被引量:48
  • 3Zabusky N J, Kruskal M D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states[J]. Physical Review Letters, 1965, 15(6): 240-243.
  • 4Rasulov M Coskun E. An efficient numerical method for solving the Korteveg-de Vries equation in a class of discontinuous functions[J]. Applied Mathematics and Computation, 1999, 102(2-3): 139-154.
  • 5郭本瑜.KdV-Burgers方程谱方法的误差估计[J]_数学学报,1985,28(3):1-15.
  • 6Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation[J]. Journal of Physics A: Mathematical and General, 2000, 33(18): 3613-3626.
  • 7Hirsh R S. High order accurate solution of fluid mechanics problems by a compact differencing technique[J]. Journal of Computational Physics, 1975, 19(1): 16-42.
  • 8Lele S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42.
  • 9Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics, 2002, 178(1): 81-117.
  • 10Ma Y P, Kong L H, Hong J L, et al. High-order compact splitting multisymplectic method for the coupled nonlinear SchrSdinger equations[J]. Computers and Mathematics with Applications, 2011, 61(2): 319-333.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部