期刊文献+

基于改进的卷积神经网络邮件分类算法研究 被引量:8

Research on Mail Classification Algorithm Based on Improved Convolutional Neural Network
下载PDF
导出
摘要 针对传统文本分类方法中出现的维度过高和数据稀疏问题,通过对卷积神经网络(Convolutional Neural Network,CNN)和inception V1模型的深入研究,将两个模型融合起来,提出了一种基于i-CNN模型的邮件分类方法;在卷积、池化操作中加入了1×1卷积核降低特征向量的厚度,减少了参数,提高了计算性能;通过数据验证,i-CNN模型对邮件的分类结果高达92.18%,在对比实验中,i-CNN模型相对于几种机器学习分类模型,取得了最高的分类精准率,在有无inception结构模型对比中,i-CNN模型精准率高于CNN模型;说明该模型具有较好的分类效果,且inception V1模型的融入能提高文本分类的准确率。 Aiming at the problems of high dimension and sparse data in traditional text classification methods,this paper proposes an e-mail classification method based on i-CNN model by combining convolutional neural network(CNN)and inception V1 model.In the convolution and pooling operation,1×1 convolution kernel is added to reduce the thickness of eigenvectors,reduce the parameters and improve the computational performance.Through data validation,the result of i-CNN model for e-mail classification reaches as high as 92.18%.In the comparative experiment,compared with several machine learning classification models,i-CNN model achieved the highest classification accuracy.In the comparison with or without the inception structure model,i-CNN model accuracy is higher than CNN model.It shows that the model has a good classification effect,and the integration of inception V1 model can improve the accuracy of text classification.
作者 宋丹 陆奎 戴旭凡 SONG Dan;LU Kui;DAI Xu-fan(School of Computer Science and Engineering, Anhui University of Science & Technology, Anhui Huainan 232001, China;School of Electrical and Information Engineering,Anhui University of Science & Technology, Anhui Huainan 232001, China)
出处 《重庆工商大学学报(自然科学版)》 2022年第3期20-25,共6页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金项目资助(51274011).
关键词 文本分类 卷积神经网络 inception V1 word2vec text classification convolution neural network inception V1 word2vec
  • 相关文献

参考文献6

二级参考文献53

  • 1叶菲,罗景青,俞志富.一种改进的并行处理SVM学习算法[J].微电子学与计算机,2009,26(2):40-43. 被引量:6
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3陈世立,高野军.基于神经网络与贝叶斯的混合文本分类研究[J].情报杂志,2007,26(5):34-36. 被引量:3
  • 4白莉媛,黄晖,刘素华,阎秋玲.基于自助平均的朴素贝叶斯文本分类器[J].计算机工程,2007,33(15):190-192. 被引量:5
  • 5McCaUum A, Nigam K. A comparison of event models for naive bayes text classification. AAAI-98 Workshop on Learning for Text Categorization. Madison, Wisconsim(32).
  • 6Joachims T. Text categorization with support vector machines: Learning with many relevant features. European Conference on Machine Learning (ECML). Chemnitz, Germany. 1998. 137-142.
  • 7Ruiz ME, Srinivasan E Hierarchical neural networks for text categorization. Pro. of SIGIR-99, 22nd ACM International Information Retrieval. 1999(32). 281-282.
  • 8Guo GD, Wang H, Bell D, Bi YX, Greer KR. An kNN Model-based Approach and Its Application in Text Categorization. CICLing 2004, LNCS 2945, 2004. 559--570.
  • 9Debole F, Scbastiani E An analysis of the relative hardness of recuters-21578 subsets. Journal of the American Society for Information Science and Technology,2004,56(6): 584--596.
  • 10Bengio Y. Learning deep architectures for A/. Foundations and Trends in Machine I_emag, 2009, 2(1): 1-127.

共引文献199

同被引文献97

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部