摘要
针对一类非凸半无限多目标规划问题,建立了其近似解的最优性条件。借助切向次微分定义了新的正则条件以及广义不变凸函数,值得注意的是,涉及的函数并不需要满足局部Lipschitz条件。首先,给出半无限多目标规划问题的(η,ε)-拟弱有效解和(η,ε)-拟有效解的定义,在正则条件的假设下,获得(η,ε)-拟弱有效解的必要最优性条件;然后,在广义不变凸性假设下,获得(η,ε)-拟(弱)有效解的充分最优性条件;所得结果推广和改进了相关文献的主要结论。
Optimality conditions of approximate solutions for nonconvex semi-infinite multiobjective programming problem are established.By means of tangential subdifferential,some new regular conditions and generalized invex functions are defined.It’s worth noting that the functions involved are not necessarily local Lipschitz.The definitions of(η,ε)-quasi weakly efficient solutions and(η,ε)-quasi efficient solutions for semi-infinite multiobjective programming problems are introduced.By the regular conditions,the necessary optimality condition of(η,ε)-quasi weakly efficient solutions is obtained.Moreover,the sufficient optimality condition of(η,ε)-quasi(weakly)efficient solutions is proposed by the generalized invex convexity.The results obtained in this paper improve and generalize the corresponding results in the literature.
作者
张雯
龙宪军
黄应全
ZHANG Wen;LONG Xian-jun;HUANG Ying-quan(School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China)
出处
《重庆工商大学学报(自然科学版)》
2022年第3期41-46,共6页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
国家自然科学基金(11471059)
重庆市自然科学基金(CSTC2018JCYJAX0119)
重庆市教育委员会科学技术研究重点项目(KJZD-K201900801)
重庆市研究生创新型科研项目(CYS21405)
重庆工商大学科研团队项目(ZDPTTD201908).
关键词
半无限多目标规划
(η
ε)-拟弱有效解
切向次微分
广义不变凸函数
semi-infinite multi-objective programming
(η,ε)-quasi weakly effective solution
tangential subdifferential
generalized invex functions