期刊文献+

混沌Yang系统的Hopf分岔分析与控制

Hopf Bifurcation Analysis and Control of Chaotic Yang Systems
下载PDF
导出
摘要 以混沌Yang系统为研究对象,提出了一类时滞混沌Yang系统,弥补了现有混沌体系的不足,通过数值计算明确了系统在平衡点E0(0,0,0)处的局部稳定性以及时滞系统Hopf分岔的存在性,并由此推导出时滞系统发生Hopf分岔时的条件:当τ=τn时,时滞系统在平衡点E0(0,0,0)处分岔已经产生,并存在极限环。根据线性状态反馈控制法,有效地对时滞系统的分岔点进行了提前或滞后控制;通过龙格库塔方法,运用MATLAB软件仿真得到了时滞系统在分岔点τk=1.4285处发生了超临界Hopf分岔现象;同时发现改变控制参数k的值可以提前或滞后分岔的产生。 Taking the chaotic Yang system as the research object,a class of time-delay chaotic Yang system is proposed to make up for the shortcomings of existing chaotic systems.Through numerical calculation,the local stability of the system at the equilibrium point E0(0,0,0)and the existence of Hopf bifurcation of the time-delay system are clarified.The conditions for Hopf bifurcation of time-delay systems were deduced.Whenτ=τn,the time-delay systems had generated the bifurcation at the equilibrium point E0(0,0,0),and there were limit cycles.Therefore,according to the linear state feedback control method,the bifurcation point of the time-delay system is effectively controlled in advance or behind time.At the same time,through the Runge Kutta method and the MATLAB software simulation,the time-delay system at the bifurcation pointτk=1.4285 occurred the phenomenon of supercritical Hopf bifurcation.At the same time,the bifurcation can be generated ahead of time or behind time by changing the value of parameter k under the condition that the control parameter value satisfies the value of k.
作者 周六圆 崔岩 赵少卿 卢晨晖 ZHOU Liu-yuan;CUI Yan;ZHAO Shao-qing;LU Chen-hui(School of Mechanical Engineering, Shanghai University of Engineering Science,Shanghai,201620,China)
出处 《重庆工商大学学报(自然科学版)》 2022年第3期47-53,共7页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金青年科学基金项目(11604205).
关键词 时滞Yang系统 单时滞Hopf分岔 MATLAB 分岔控制 time-delay Yang system single time-delay Hopf bifurcation Matlab bifurcation control
  • 相关文献

参考文献6

二级参考文献57

  • 1李瑞红,徐伟,李爽.一类新混沌系统的线性状态反馈控制[J].物理学报,2006,55(2):598-604. 被引量:30
  • 2马知恩 周义仓.常微分方程定性与稳定性分析[M].北京:科学出版社,2001..
  • 3Smale S. Finding a horseshoe on the beaches of Rio. The Mathenmtical Intelligenzer, 1998, 20(1) : 39- 44.
  • 4Wiggins S. Global bifurcations and chaos: analytical meth- ods. New York: Springer- Verlag, 1988.
  • 5Robinson C. DynamicM systems: stability, symbolic dy- namics, and chaos. New York: CRC Press, 1999.
  • 6Morse M, G A Hedlund. Symbolic dynamics. American Journal of Mathematics, 1938,60 (4) : 815 - 866.
  • 7Zgliczynski P, M Gidea. Covering relations for multidimen- sional dynamical systems. Journal of Differential Equa- t/ons, 2004, 202 ( 1 ) : 32 - 58.
  • 8Szymczak A. The Conley index and symbolic dynamics. Topology, 1996, 35(2): 287-299.
  • 9Kaezy6ski T, Misehaikow K, Mrozek M. Computational homology. New York: Springer Verlag, 2004.
  • 10Plumecoq J, Lefranc M. From template analysis to genera- ting partitions: I: Periodic orbits, knots and symbolic en- codings. Physica D: Nonlinear Phenomena, 2000, 144 ( 3 -4) : 231-258.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部