摘要
设ψ(n)是Dedekind函数.r为正整数,则有∑n≤xnψ(n)r=αx+E(x,r),其中α是与r有关的常数,而E(x,r)是误差项.利用经典的复积分理论及解析的方法研究了E(x,r)的算术均值和积分均值,得到了一个较为精确的估计式.
Let ψ(n) is the Dedekind totient function, and r is a positive integer. It is known that∑n≤xnψ(n)r=αx+E(x,r),where α is a constant related to r and E(x,r) is the error term. The main purpose was using the classical complex integral theory and the analytic method to study the arithmetic and integral mean value of E(x,r), and gave a more precise asymptotic formula.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2002年第6期601-606,共6页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(19971074).