期刊文献+

基于支持向量机的新能源台区相户关系辨识方法

Identification method of phase household relationship in new energy stations based on support vector machine
下载PDF
导出
摘要 提出一种基于随机模糊模拟理论的改进T型关联度和支持向量机的用户相户辨识方法。针对风、光不确定性,采用随机模糊模拟理论构建风电与光电的随机模型,确定电动汽车离并网时刻、日行程数的概率密度函数,利用拉丁超立方抽样技术对概率密度函数进行抽样,采用频谱聚类统一管理的方法获得聚类相似的电车用户,对聚类相似的电车用户采用不同的充放电策略,得到电动汽车充放电功率时刻分布;对不同风光场景下和不同电动汽车充放电策略下的用户电压时间序列特征数据进行重构;利用改进T型关联度和支持向量机的两阶段相户辨识方法对单一风、光场景和多风、光场景下的电动汽车用户进行相户辨识。通过实例仿真分析证实所述方法具有较强的辨识精度,普适性强且易实现,可适应智慧城市的发展。 This paper presents a user identification method based on stochastic fuzzy simulation theory with improved T-type correlation degree and support vector machine(SVM).Aiming at the uncertainty of wind and light,the stochastic model of wind power and photoelectricity is constructed by using the stochastic fuzzy theory,and the probability density function of electric vehicle off-grid time and daily travel number is determined.The Latin hypercube sampling technology is used to sample the probability density function,and the EV users with similar clusters are obtained by using the method of spectrum clustering unified management.Different charging and discharging strategies are adopted for the EV users with similar clusters to obtain the time distribution of electric vehicle charging and discharging power.The characteristic data of user voltage time series under different wind and light scenes and different EV charge and discharge strategies are reconstructed.A two-stage household identification method based on improved T-type correlation degree and support vector machine is used to identify the household of electric vehicle users in single wind and light scene and multiple wind and light scenes.Through the example simulation analysis,it is proved that the method described in this paper has a strong identification accuracy,is universal and easy to implement,and can adapt to the development of smart city.
作者 蔡志宏 吴杰康 王瑞东 李红玲 陈盛语 蔡锦健 张宏业 CAI Zhihong;WU Jiekang;WANG Ruidong;LI Hongling;CHEN Shengyu;CAI Jinjian;ZHANG Hongye(School of Automation,Guangdong University of Technology,Guangzhou 510006,China)
出处 《黑龙江电力》 CAS 2022年第1期23-31,共9页 Heilongjiang Electric Power
基金 广东省科技计划项目(项目编号:2020A050515003) 广州市科技计划项目(项目编号:202002030463) 广东电网有限责任公司广州广电局科技计划项目(项目编号:0800002020030102DDPW00003)。
关键词 新能源台区 相户辨识 支持向量机 分布式电源 电动汽车 电压时间序列 new energy platform area phase household identification support vector machine distributed generation electric vehicle voltage time series
  • 相关文献

参考文献18

二级参考文献252

共引文献1014

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部